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Abstract

Background: Autism spectrum disorder (ASD) is sexually dimorphic in brain structure, genetics, and behaviors. In
studies of brain tissue, the age of the population is clearly a factor in interpreting study outcome, yet sex is rarely
considered. To begin to address this issue, we extend our previously published microarray analyses to examine
expression of small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), in ASD and in the control temporal
cortex in males and females. Predicted miRNA targets were identified as well as the pathways they overpopulate.

Findings: After considering age, sexual dimorphism in ASD sncRNA expression persists in the temporal cortex and in
the patterning that distinguishes regions. Among the sexually dimorphic miRNAs are miR-219 and miR-338, which
promote oligodendrocyte differentiation, miR-125, implicated in neuronal differentiation, and miR-488, implicated in
anxiety. Putative miRNA targets are significantly over-represented in immune and nervous system pathways in both
sexes, consistent with previous mRNA studies. Even for common pathways, the specific target mRNAs are often
sexually dimorphic. For example, both male and female target genes significantly populate the Axonal Guidance
Signaling pathway, yet less than a third of the targets are common to both sexes.

Conclusions: Our findings of sexual dimorphism in sncRNA levels underscore the importance of considering sex, in
addition to age, when interpreting molecular findings on ASD brain.

Keywords: Autism, microRNA, small noncoding RNA, Superior Temporal Sulcus, Auditory cortex, Myelin,
Oligodendrocytes, Sex, Sexual dimorphism, miR-181, miR-338, miR-219, miR-125, miR-448, Postmortem human brain

Background
Autism spectrum disorder (ASD) is one of a number of
neurodevelopmental disorders that display sexual di-
morphism, occurring more frequently in males, which
affect brain structure, gene expression, pathways, function,
and ultimately behaviors that will require individualized
treatments [1–3]. Extensive evidence demonstrates sex
differences in ASD brain [4–7]. Sex chromosomes may
play a role, with the Y chromosome being a possible risk
factor for ASD and X chromosome perhaps having a pro-
tective effect [3]. Females appear to have a higher thresh-
old for being affected by genetic factors than males, thus
requiring a greater genetic burden, and may have greater
brain plasticity [8, 9]. Females carry a higher proportion of
de novo CNVs (copy number variants) than males, the

CNVs in females disrupt a larger number of genes than in
males, and females carry a greater number of de novo sin-
gle nucleotide variants (SNVs) than males [10, 11]. Envir-
onmental and hormone factors that differ between the
sexes, like testosterone, may impact the time course and
severity of symptoms [12].
Few molecular studies of ASD brain tissue to date

have considered potential sexual dimorphism often be-
cause of limited tissue availability of female cases. In typ-
ical brain development, male-biased gene expression
changes are enriched for extracellular matrix, immune
response, chromatin, and cell cytoskeleton pathways that
have been implicated in ASD [13]. Sex differences in
microRNA (miRNA) expression in the frontal cortex
have also been described in typical neurodevelopment
[14]. Specific genetic mechanisms, such as the exp-
ression of retinoic acid-related orphan receptor alpha
(RORA) in the frontal cortex, which regulates CYFIP1,
may be related to elevated testosterone levels and a po-
tential contributor to the sex bias [15]. There is no clear
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evidence to date for systematic sex-differential expres-
sion of ASD risk genes in human brain; however,
genes expressed at higher levels in males are signifi-
cantly enriched for genes upregulated in postmortem
autistic brain, including astrocyte and microglia
markers [16].
Here, we extend our analyses of previously published

microarray data [17, 18] to examine sexual dimorphism
of microRNA and other small noncoding RNA
(sncRNA) in male and female ASD and control brain tis-
sue. We focused on two temporal cortical regions: the
superior temporal sulcus (STS), a region implicated in
social impairments in ASD [19–22], and the primary
auditory cortex (PAC). Predicted miRNA targets were
identified as well as pathways in which they over-
populated. We then evaluated our findings in relation to
the SFARI database and two gene expression studies in
ASD brain: Ziats and Rennert, 2013 [13] and Werling et
al., 2015 [16].

Methods
Brain samples
The methods used in the current study are similar to
our recent publications [17, 18] (Table 1). Briefly, a total

of 34 samples were obtained from 10 ASD and 8 control
subjects. The PAC sample was taken from the crown of
Heschl’s gyrus and included Brodmann’s areas, 41 and
42 (Fig. 1). The STS samples included Brodmann’s area
22 and were taken from the upper wall of the STS op-
posite Heschl’s gyrus (Fig. 1). Postmortem tissue integ-
rity, processing, and microarrays are as described in our
prior publications on this data set [17, 18].

Statistics
We used a mixed regression model including diagnosis,
sex, age, region, and subject, and group*sex and group*-
sex*region interactions. To obtain estimates of variance
components for our mixed model, we used restricted
maximum likelihood estimation (REML), which is suit-
able for unbalanced designs (W.A. Thompson, 1962).
REML optimizes the parameter estimates for the effects
in the model. We used repeated measures to account for
multiple regions measured within the same subjects
(STS and PAC), and we made the SubjectID a random
effect. Considering that our sample size was unbalanced
between males and females, some identified differences
may be due to this limitation. Statistical significance was
defined as P ≤ 0.005 and absolute fold change ≥1.2. To

Table 1 Subject characteristics for ASD (autism spectrum disorders) and controls

Primary diagnosis Case number Sex Age (years) Diagnostic measure PMI (hours) Primary cause of death

ASD B-7002 F 5 ADI-R 33.0 Drowning

ASD B-5342 F 11 ADI-R 12.9 Drowning

ASD B-7575 M 15 Suspected ASD 30.8 Head trauma

ASD B-6640 F 29 ADI-R 17.8 Seizure/stroke

ASD B-7762 M 30 Suspected ASD 22.9 Epilepsy

ASD B-5173 M 30 ADI-R 20.3 Gastrointestinal bleeding/seizure

ASD B-6401a M 39 ADI-R 14.0 Cardiac tamponade

ASD B-7085 F 49 Suspected ASD 21.1 Cancer

ASD B-7376b F 52 ADI-R 39.2 Unknown

ASD B-7886 M 50 ADI-R 22.7 Aspiration/seizure

ASD mean n = 10 31.0 ± 5.3 23.5 ± 2.7

CTRL B-6736 F 4 – 17.0 Acute bronchopneumonia

CTRL B-7387 M 17 – 30.8 Asphyxia/hanging

CTRL B-7738 M 24 – 35.5 Unknown

CTRL B-7369 M 36 – 26.0 Possible pulmonary embolism/MI

CTRL B-7835 F 39 – 25.3 Asphyxia/pneumonia

CTRL B-7333 M 40 – 25.3 Hepatic encephalopathy

CTRL B-8018 M 54 – 19.9 Unknown

CTRL B-8155 M 58 – 20.5 Unknown

CTRL mean n = 8 34.0 ± 6.5 25.0 ± 2.1

Demographics of each brain donor. The average ± the standard error of the mean is provided for ASD and CTRL. There were no significant differences in sex, age,
or PMI between ASD and CTRL groups
ASD autism spectrum disorders, CTRL typically developing control, PMI postmortem interval
aSTS excluded
bPAC excluded
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account for normal sexual dimorphism, we compared
ASD female to control female and ASD male to control
male and overlapped the results to identify sexually di-
morphic sncRNA expression specifically in ASD.

Pathway analysis and overlap with other studies
Ingenuity pathway analysis (IPA) was used to identify
predicted miRNA targets of mature miRNA of major
isoforms with sexual dimorphism and to identify over-
represented pathways and biological functions. Targets
of stem-loop precursor miRNAs (pre-miRNA) were not
considered in this pathway analysis, since only mature
miRNA can affect gene expression. A Fisher exact test
with a Benjamini-Hochberg corrected P < 0.05 was used
for determining significance of pathway enrichment. The
sexually dimorphic predicted mRNA target genes and
pathways were compared to three other data sets: (1)
autism risk genes from SFARI using the hypergeometric
probability function phyper in R with population size set
to all protein-coding human genes of 20,687 [23], (2)
Ziats and Rennert [13] based upon a total pool of 656
pathways and 90 bio-functions and disease categories in
the IPA Knowledge Database, and (3) Werling et al. [16],
an adult brain (102 mRNA/14,246), a replication adult
brain data set (50 mRNA/14,869), and a prenatal brain
(303 mRNA/9,840) (P < 0.005, FC > |1.2|).

Results
A total of 17 STS and 17 PAC samples were analyzed
from 10 ASD and 8 control subjects (Table 1). There
were no significant differences in average ages or post-
mortem interval (PMI) between groups (Table 1). All
data and analyses are available in supplementary mate-
rials or upon request.

Sexual dimorphism of sncRNA in ASD brain
There are 20 sncRNAs differentially expressed (DE) in
STS of ASD females compared to control females, which
is significantly more (P = 0.04) than the 8 sncRNAs

regulated in STS of ASD males compared to control
males (Fig. 1, Table 2, Additional file 1: Table S1). There
are eight sncRNAs DE in PAC of ASD females compared
to control females, which was not significantly more
than the three sncRNAs (P = 0.23) regulated in PAC of
ASD male compared to control males (Fig. 1, Table 2,
Additional file 1: Table S2). There are significantly more
dysregulated sncRNAs in STS compared to PAC in ASD
females, but not in ASD males (Fig. 1, Table 2). Regional
analyses for STS vs PAC are shown in Fig. 2. There are
55 combined dysregulated sncRNAs in ASD females and
34 in ASD males (P = 0.03) (Fig. 2, Table 2, Additional
file 1: Tables S3–S6). One overlapping sncRNA (mir-
455) is DE in an opposite direction in ASD females and
ASD males compared to control females and control
males, respectively.

Predicted mRNA targets and pathways
Pathway analyses are summarized in Additional file 1:
Table S7 and presented in Additional file 1: Tables S8–
S17. There are significantly more over-represented path-
ways in ASD females than those in ASD males (P <
0.0001) in regional analysis (STS vs PAC), and the num-
bers of common pathways are also significant (P < 0.05)
(Fig. 3). Of the total over-represented pathways in re-
gional analyses, ASD females have significantly more im-
mune, neurotransmitter, and other nervous system
signaling pathways than those in ASD males (P < 0.0001)
(Fig. 3). It is notable that even for common pathways,
the specific target mRNAs are often sexually dimorphic.
For example, both male and female target genes signifi-
cantly populate the axonal guidance signaling pathway,
yet less than a third of the targets are common to both
sexes (Fig. 4).

Overlap of the sexually dimorphic pathways with others
implicated in ASD
We found a significant overlap between the predicted
targets and pathways with the findings of Ziats and
Rennert [13, 14] and SFARI risk genes (Additional file 2:
Figure S1 and Additional file Tables 1: S18-S22).
Seventy-four genes overlap between SFARI genes and
our female regional analysis (STS vs PAC) and are sig-
nificantly enriched in nervous system signaling, includ-
ing glutamate receptor signaling, reelin signaling in
neurons, and CREB signaling in neurons, as well as in
p53 signaling. There is no significant overlap between
our results and the three groups of Werling et al. [16].
However, we performed IPA pathway analysis on their
433 combined sexually dimorphic mRNA, and they are
over-represented in 14 pathways. Of these, three overlap
with our PAC pathways and nine overlap with our STS

Fig. 1 Dysregulated sncRNA in ASD females vs control females and
ASD males vs control males for the STS (superior temporal sulcus)
and the PAC (primary auditory cortex)
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vs PAC pathways (trend towards significance, P < 0.1). In
addition, miR-125 is sexually dimorphically dysregulated
in the prefrontal cortex in Ziats and Rennert [14] and in
the STS in our study (Table 2).

Discussion
This short report underscores the importance of
considering biological sex as a factor when interpreting
gene expression studies of postmortem brains from
individuals with ASD. Our findings from this small
sample suggest that the expression of miRNA and other
sncRNA is sexually dimorphic in the temporal cortex of
ASD individuals. There are generally more dysregulated
sncRNA, miRNA target genes, and pathways in ASD
females compared to ASD males. There is a significant
overlap between the male miRNA putatively dysregu-
lated pathways in our study and that which occurs dur-
ing normal male neural development [13]. Though there
is an overlap between the female ASD regional STS-

PAC miRNA targets and the SFARI genes, most of the
sncRNA-regulated sexually dimorphic target genes are
not enriched for autism risk genes, similar to the find-
ings of Werling et al. [16]. The sexually dimorphic over-
enrichment of miRNA target genes in the immune and
nervous system pathways is consistent with prior gene
expression studies of ASD brain [24, 25] that postulated
that the immune pathways were related to environment
and the neuronal pathways were related to genetics [24].
The greater number of dysregulated sncRNA, miRNA

target genes, and pathways in females compared to male
ASD subjects supports a body of evidence, suggesting that
there is a greater genetic load in ASD females [9] [3, 26],
and is consistent with a possible female protective effect [3,
27, 28]. The greater sncRNA dysregulation in females in
our study might also support a recent proposal that female
brains are less vulnerable to ASD because they are more
plastic [8]. Our data could be interpreted to mean that the
female ASD brain mounts a greater protective molecular

Table 2 Dysregulated sncRNA in the temporal cortex of ASD male and female brains

aNoted in Ander et al., 2015bNoted in Stamova et al., 2015
Green denotes downregulated sncRNA in ASD compared to control. Red denotes upregulated sncRNA in ASD compared to control
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response compared to males, factors that may contribute
to the so-called “female camouflage effect” [29].
There are a number of sexually dimorphic miRNAs

from our study that have been associated with ASD-
relevant diseases and processes (Table 3). For example,
one study of miRNA in serum of children with ASD [30]
found two miRNAs, miR-151 and miR-181 that were

also differentially expressed in the current study. miR-
181 promotes synaptogenesis and decreases in axon
growth [31, 32]. It is expressed in the brain and previ-
ously associated with autistic phenotypes [33] and
schizophrenia [34]. The microRNA is also involved in an
inflammatory response [35], influences apoptosis and
mitochondrial function [36] in astrocytes, and targets
GABA receptors [37].
In STS of ASD female compared to control female,

miR-219 and miR-338 showed the highest level of down-
regulation. Both miRNAs are involved in regulating
oligodendrocyte differentiation and likely myelin produc-
tion [38]. Though abnormalities of white matter have
been observed in ASD brains for some time, recent
studies point to important sex differences. For example,
a recent anatomical study of autism brains showed large
white matter regions showing significant sex × diagnosis
interactions [5]. This was supported by sex differences
found in the corpus callosum of young children with
ASD [6]. While no alterations were observed in ASD
males compared to control males, mean diffusivity, axial
diffusivity, and radial diffusivity were all increased in
ASD females compared to control females [6].
miR-219 and miR-338 both promote oligodendrocyte

differentiation [38]. Inhibition of both miRNAs inhibits
oligodendrocyte maturation and function in part by dir-
ectly repressing negative regulators of oligodendrocyte
differentiation, including transcription factors Sox6 and
Hes5 [38]. miR-338 also attenuates cortical neuronal
outgrowth by modulating expression of axon guidance

Fig. 2 Regional sncRNA dysregulation in the superior temporal
sulcus (STS) vs the primary auditory cortex (PAC) for female ASD and
female control subjects and for male ASD and male control subjects

Fig. 3 Predicted mRNA target genes and their enriched pathways for the sncRNA dysregulated in the regional STS to PAC comparison for female
ASD and female control subjects combined (pink) compared to male ASD and male controls subjects combined (blue). The predicted targets and
enriched pathways that are common to males and females are in green
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genes and axonal mitochondrial genes [39–41]. How-
ever, it is the role of miR-219 and miR-338 on differenti-
ation of oligodendrocyte precursors during development
(with downregulation over fourfold in STS of ASD fe-
males, but not of ASD males) that may significantly con-
tribute to the sexually dimorphic changes of white
matter tracts including the corpus callosum seen in ASD
brain [5, 6]. It is notable that decreased miR-219 and
miR-338 were detected in female STS of ASD brains and
not PAC, an important finding since STS is an association
cortex implicated in social behavior, which is a core symp-
tom of ASD, whereas PAC is not generally associated with
ASD [42]. It will be important to examine miR-219 and

miR-338 in amygdala and other brain regions implicated in
ASD core symptoms, particularly since the number of oligo-
dendrocytes in amygdala is decreased in ASD brain [43]. It
will also be important to quantify oligodendrocyte numbers
in STS of ASD brain given the current miRNA results.
It is important to note that sex differences in the miR-

NAome are prominent in health and disease [44–47].
Several miRNAs we identified in this study are also
sexually dimorphic in other tissues and disease condi-
tions. For example, miR-100, miR-196a, and miR-31 are
sexually dimorphic in human amniotic mesenchymal
stem cells (hA-MSCs) from obese versus normal weight
women who gave birth to females, but not males [48].

Fig. 4 Sexual dimorphism in the axonal signaling pathway. Predicted targets of sexually dimorphic mature miRNAs that were dysregulated in regional
analysis comparison of STS to PAC. Pink indicates targets predicted to be regionally dysregulated in ASD female only, blue are dysregulated in ASD males
only, and green regulated in both males and females. Note that the majority of predicted targets are sexually dimorphic
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This suggests that these miRNAs may be involved in
metabolic changes. Additionally, miR-31 was sexually di-
morphic in an animal model of systemic lupus erythe-
matosus (SLE) [49]. Several mature miRNAs map to
cytoband 14q32, where there is an imprinted miRNA
cluster. In our study, miRNA-151b was downregulated
in ASD-STS female vs typical STS female, while miR-
342-3p, miR-432, and miR-485-5p were upregulated in
ASD male in the inter-regional analysis compared to
typical male. Loss of imprinting in this region has been
associated with multiple diseases [50, 51]. Our results
suggest involvement of miRNAs within or near this clus-
ter in ASD as well.
As we have reported previously [17], there are changes

of expression of sncRNA in ASD-PAC, though there are
more changes in ASD-STS. In fact, some of the miRNAs
we previously reported are included in the present study,
indicating they may have been driven by sex differences

as well. Interestingly, even though there were attenuated
regional differences (STS vs PAC) in both male and fe-
male ASD compared to control (Fig. 2), the greatest
number of miRNA targets by far was identified in the re-
gional comparisons of STS to PAC in both females and
males, though there were significantly more targets in
females. These large differences of expression between
regions, particularly between primary sensory cortices
like PAC and association cortices like STS, have been
noted previously in neurotypical adult and developing
human brain [52, 53] and are consistent with the present
data both for ASD and for controls. Integrative func-
tional analyses of ASD risk genes implicate cortical
layers II/III and V/VI pyramidal neurons [54], and co-
expression network analyses of ASD risk genes also im-
plicate layers V/VI cortical projection neurons [55]. The
current findings of dysregulated miRNA that control
oligodendrocyte differentiation in female STS, but not in
male STS, adds complexity to the picture particularly
since miR-219 and miR-338 are not dysregulated in ei-
ther females or males in PAC. Thus, if projection neu-
rons are involved in ASD, they are likely selectively
affected in specific cortical regions and it is possible that
there are regional differences of miRNA-mediated
oligodendrocyte-myelination of the projection neuron
axons that are also sexually dimorphic.
In general, there is little overlap of the specific miRNA

regulated in ASD and control brains in this study and
the miRNA described by Ziats and Rennert for typically
developing human brain [14]. However, there is tremen-
dous overlap of the predicted pathways that are sexually
dimorphic. There is significant overlap for the pathways
for males in our regional analyses and male pathways in
neurotypical brains [13] and a trend for overlap between
the sexually dimorphic pathways reported by Werling et
al. [16] and our study.
There are important limitations to consider when

interpreting this data that are common to studies of
postmortem human brains, including small sample size
and variation in cause of death, postmortem interval,
age at death, agonal state, postmortem RNA integrity,
and tissue preparation at different brain banks. In
addition, the changes in miRNA and predicted targets
and pathways studied here could lead to some aspects of
ASD, but they could just as well be a consequence of the
condition and even represent compensatory mecha-
nisms. Future studies will need to assess both miRNA
and mRNA in the same samples, so that one can deter-
mine if specific miRNA target mRNA are present and
are regulated in an inverse direction as occurs for most
miRNA-mRNA interactions. Small sample size is also
limitation of this report and findings need to be con-
firmed in larger cohorts and with alternative gene ex-
pression profiling techniques such as qRT-PCR.

Table 3 Relevant literature on example miRNAs with sexual
dimorphism in ASD relative

miRNA Relevant findings

miR-151 (female STS) Regulated in serum of children with autism [30]

miR-181 (female STS
vs PAC)

Regulated in serum of children with ASD [30];
expressed in brain, promotes synaptogenesis
and decreases axon growth
[31, 32]; associated with ASD phenotypes [33]
and schizophrenia [34]; associated with
inflammatory responses of astrocytes
[35]; influences apoptosis and mitochondrial
function in astrocytes [36]; targets GABA
receptors [37].

miR-219 (female STS) Regulates oligodendrocyte differentiation and
likely myelin production [38]; regulates neural
progenitors by dampening
apical Par protein-dependent Hedgehog
signaling [57]; polymorphisms in miR-219 affect
genes involved in NMDAR signal
ing and schizophrenia [58]. Young age and
environmental enrichment increase serum
exosomes containing miR-219 that
promote CNS myelination [59]; human
endometrial-derived stromal stem cells (EnSCs)
can be programmed into
pre-oligodendrocyte cells by overexpression of
miR-219 or miR-338 [60, 61].

miR-338 (female STS) Regulates oligodendrocyte differentiation and
likely myelin production [38]; attenuates cortical
neuronal outgrowth by
modulating expression of axon guidance genes
and axonal mitochondrial genes [39–41]

miR-488 (female PAC) Associated with panic disorder and regulate
several anxiety candidate genes and related
pathways [62]

miR-125 (female STS) Differentially expressed in male vs female frontal
lobe regions during normal neurodevelopment
[14]; neuronal
differentiation, and specifically promotes the
generation of neurons of dopaminergic fate
and possibly other types of
neurons [63]
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However, this study clearly indicates that sex needs to be
considered when interpreting data on postmortem hu-
man brains in ASD.

Conclusions
Our own molecular studies, and many others, have dem-
onstrated clear age-related changes in the brains of both
typically developing and autistic individuals [17, 18, 24, 56].
Beyond age considerations, the current data also support a
very important role for biological sex and suggest that
pharmacological treatments would likely have to be evalu-
ated separately in both sexes [3, 13, 15, 16]. A greater num-
ber of dysregulated sncRNAs and their gene targets and
pathways in female ASD brain are consistent with a greater
genetic load in females, a female protective effect, and pos-
sibly greater plasticity of female ASD brain. Although
speculative, there are specific miRNAs dysregulated in STS
of female ASD brain associated with oligodendrocyte dif-
ferentiation (miR-219 and miR-338) that could relate to
sexual dimorphism of white matter tracts, miR-488 that
could relate to more anxiety in females, and miR-125 and
miR-181 implicated in neuronal development that may be
sexually dimorphic.
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Additional file 1: Supplementary Data Tables. Table S1. sncRNA differentially
expressed in ASD-STS vs CTRL-STS. Table S2. sncRNA differentially expressed in
ASD-PAC vs CTRL-PAC. Table S3. Female (F) ASD Regional Analysis. F_ASD-STS
vs F_ASD-PAC. Table S4. Female (F) controls (CTRL) regional analysis. F_CTRL-
STS vs F_CTRL-PAC. Table S5. Male (M) ASD regional analysis. M_ASD-STS vs
M_ASD-PAC. Table S6. Male (M) controls (CTRL) regional analysis. M_CTRL-STS
vs M_CTRL-PAC. Table S7. Summary of putative target analyses. Table S8.
Pathway analysis of putative targets of the mature miRNA from the PAC analysis
in females. Table S9. Pathway analysis of putative targets of the mature miRNA
from the PAC analysis in males. Table S10. Pathway analysis of putative targets
of the mature miRNA from the STS analysis in females. Table S11. 227 common
targets between female and male regional analyses. Table S12. Pathway analysis
of putative targets of the mature miRNA from the female regional analysis.
Table S13. Pathway analysis of putative targets of the mature miRNA from the
male regional analysis. Table S14. Pathway analysis of putative targets of the
mature miRNA from the female regional analysis: immune pathways. Table S15.
Pathway analysis of putative targets of the mature miRNA from the male
regional analysis: immune pathways. Table S16. Pathway analysis of putative
targets of the mature miRNA from the female regional analysis: Neurotransmit-
ter and other nervous system signaling pathways. Table S17. Pathway analysis
of putative targets of the mature miRNA from the male regional analysis:
neurotransmitter and other nervous system signaling pathways. Table S18.
Pathway overlapping between our male regional analysis and the male-
enriched pathways from Ziats and Rennert (Ref 15). Table S19. Seventy-four
ASD-implicated genes amongst the 1382 putative targets of the miRNAs from
the female regional analysis. Table S20. Canonical pathway enriched in the 74
ASD-implicated genes from the predicted targets in the female regional
analysis Table S21. Targets overlapping between our analysis and the
sexually dimorphic mRNA from Werling et al, Nature Communications, 2016;
Supplementary Material: ncomms10717-s2. Table S22. Pathway overlapping
between our male and female regional analysis and pathways were derived
based on combined sexually dimorphic mRNAs from Werling et al, Nature
Communications, 2016; Supplementary Material: ncomms10717-s2.
(XLSX 130 kb)

Additional file 2: Supplementary Figure. Overlap with relevant studies.
A Overlap between our male regional analysis (118 pathways) and Ziats

and Rennert, Mol. Autism, 2013, male-enriched pathways (10 pathways); P
of overlap = 0.0034. B Overlap between all our sexually dimorphic
pathways (290 pathways) and Ziats and Rennert, Mol. Psychiatry, 2014,
sexually dimorphic pathways (204 pathways); P of overlap < 0.00001. C
Overlap between all our sexually dimorphic pathways (287 pathways)
and Werling et al, Nat. Communications, 2016, sexually dimorphic
pathways (14 pathways). P of overlap between Werling et al, 2016 and
our regional analysis = 0.098, P of overlap between Werling et al, 2016,
and our PAC analysis = 0.092. D Overlap between the predicted targets
from our female regional analysis (STS vs PAC) (1382 targets) and SFARI
ASD-implicated genes (768). P of overlap < 0.001. (TIF 48 kb)
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