
REVIEW Open Access

Autism spectrum disorder: prospects for
treatment using gene therapy
Matthew Benger1, Maria Kinali2 and Nicholas D. Mazarakis1*

Abstract

Autism spectrum disorder (ASD) is characterised by the concomitant occurrence of impaired social interaction;
restricted, perseverative and stereotypical behaviour; and abnormal communication skills. Recent epidemiological
studies have reported a dramatic increase in the prevalence of ASD with as many as 1 in every 59 children being
diagnosed with ASD. The fact that ASD appears to be principally genetically driven, and may be reversible
postnatally, has raised the exciting possibility of using gene therapy as a disease-modifying treatment. Such
therapies have already started to seriously impact on human disease and particularly monogenic disorders (e.g.
metachromatic leukodystrophy, SMA type 1). In regard to ASD, technical advances in both our capacity to model
the disorder in animals and also our ability to deliver genes to the central nervous system (CNS) have led to the
first preclinical studies in monogenic ASD, involving both gene replacement and silencing. Furthermore, our
increasing awareness and understanding of common dysregulated pathways in ASD have broadened gene
therapy’s potential scope to include various polygenic ASDs. As this review highlights, despite a number of
outstanding challenges, gene therapy has excellent potential to address cognitive dysfunction in ASD.
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Background
“Between stimulus and response there is a space. In that
space is our power to choose our response. In our re-
sponse lies our growth and our freedom”—Viktor E
Frankl.
In autism spectrum disorder (ASD), a neurodevelop-

mental disorder affecting ~ 1.5% of the population [1],
aetiologically diverse deficits in cognitive plasticity lead
to broad impairments in communication and restricted,
repetitive behaviours [2]. Comorbidities are common
(~ 70% of cases) and include epilepsy; attention, mood
and language disorders; sleep disturbance; gastrointes-
tinal problems; and intellectual disability [3].
Despite the great personal and sociological cost of

ASD (estimated to be $2 million/patient/year [4]), only
the antipsychotics risperidone and aripiprazole are cur-
rently FDA-approved to treat ASD, indicated solely in
the treatment of irritability symptoms [5]. A fundamen-
tal reason for this lack of disease-modifying therapies

may relate to ASD’s pathogenesis, which appears to be
principally driven by heterogeneous genetic mutations
and variants and modulated by diverse gene × environ-
ment interactions, to include pregnancy-related factors
(e.g. maternal immune activation, maternal toxins) and
perinatal trauma [2, 6–10]. Many of the encoded pro-
teins implicated in ASD pathogenesis—such as cytoskel-
etal proteins, cell adhesion molecules and DNA-binding
proteins—may be ‘undruggable’ using conventional small
molecule drugs, which principally only modulate the
function of receptors and enzymes [11].
In contrast, gene therapy—broadly defined as the de-

livery of nucleic acid polymers into cells to treat dis-
ease—may be used to repair, replace, augment or silence
essentially any gene of interest in a target cell, opening
up new areas of the proteome for drug targeting [12].
Other advantages of gene therapy versus small molecules
include the ability to effect long-lasting clinical benefit
with a single treatment and the potential to control cel-
lular targeting via vector modifications [13].
Indeed, gene therapy is already making a clinical

impact in the field of neurology, with Nusinersen, an
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antisense oligonucleotide therapy approved in Spinal
muscular atrophy (SMA), and more recently Luxturna, a
viral-based gene replacement strategy approved in
Leber’s congenital amaurosis, acting as the first
disease-modifying therapies in both of these diseases
[14, 15]. In addition, a clinical trial in SMA by AveXis
using systemic delivery of recombinant adeno-associated
virus 9 (rAAV9) carrying a replacement SMN1 gene re-
cently proved safe and efficacious in neonates [16]. On
the other hand, gene therapies are clearly expensive in
the short-term, with current therapies costing at least
$500,000 per treatment, and thus remaining unafford-
able in many healthcare systems (see ref [17] for a thor-
ough economic analysis).
This review will highlight key targets for ASD gene

therapy, the utility of ASD models, and recent advances
in our ability to deliver such therapies to the central ner-
vous system (CNS). It will then move on to discuss re-
cent gene therapy strategies in ASD, concentrating on
conditions with available preclinical data, and the road-
blocks facing their clinical translation.

Genetic targets in ASD
ASD may be divided into conditions driven by a single
genetic defect (monogenic ASD) and conditions driven
by multiple genetic defects (polygenic ASD). Mono-
genic ASD conditions often contain a variable cluster
of phenotypes which include autism as part of a syn-
drome [18]. Whilst only accounting for ~ 5% of ASD
cases [18], such disorders are prime candidates for gene
therapy for two major reasons: firstly, they lend them-
selves to developing genetic models of ASD, which en-
able elucidation of the genotype to phenotype pathway,
the potential for disease reversibility postnatally, and
the efficacy/toxicity of novel therapeutics; secondly,

correction of a single causative protein defect has the
potential to arrest and possibly reverse disease path-
ology. Indeed, a basis for preclinical gene therapy stud-
ies in ASD was founded by identification of the nature
and function of causative genes for a number of mono-
genic conditions with autistic features, including Rett
syndrome (RS), fragile X syndrome (FXS), Angelman
syndrome (AS) and tuberous sclerosis (TSC) [19–23]
(Table 1).
More recently, our understanding of the genetic land-

scape of ASD has been revolutionised by several
whole-exome and whole-genome sequencing studies,
identifying hundreds of de novo and rare inherited vari-
ants influencing sporadic ASD risk [24–32]. Many of
these genes appear to be involved, either directly or in-
directly, in synaptic morphology and activity, leading to
the concept of ASD as a ‘synaptopathy’ [33, 34] (Fig. 1).
Certainly, the idea of using gene therapy to increase or
decrease the expression of target proteins within this
network and ‘retune’ the synapse is a powerful one,
which may be applicable to certain ASD cases.
However, in such a heterogeneous condition as ASD,

it is important not to become evangelical about a single
causative mechanism, especially given recent insights
into the apparently critical roles of immune dysfunction
and epigenetics in at least certain ASD cases [35, 36].
Furthermore, recent phase II clinical trials which looked
to regulate synaptic function via GABA and glutamate
receptor modulation failed to demonstrate significant
overall benefit, despite strongly positive responses in cer-
tain patients [37, 38]. Thus, it is important to consider
whether targeting the synapse using gene therapy may
be most appropriate for correcting particular ASD endo-
phenotypes in specific patient subsets, rather than seeing
it as a panacea for ASD, a topic that is returned to later
in this article.

Table 1 Genotypic and phenotypic characteristics of monogenic conditions with ASD features

Monogenic
ASD

Mutated
gene

Chromosome Protein function Autism
prevalence

Other characteristics

Fragile X
syndrome

FMR1
(encodes
FMRP)

X Binds and transports specific
mRNAs from the nucleus to
the ribosome [123]

~ 30%
[124]

Long/narrow face, macroorchidism, long ears and p
hiltrum, mild to moderate intellectual disability,
hyperactivity, intellectual disability (ID), seizures

Rett
syndrome

MECP2 X Chromatin modification [125] ~ 60%
[124]

Microcephaly, breathing irregularities, language deficits,
repetitive/stereotyped hand movements, epilepsy, ID

MECP2
duplication
syndrome

MECP2 X Chromatin modification [125] ~ 100%
[126]

Brachycephaly, spasticity, recurrent respiratory infections,
gastrointestinal hypermotility, genitourinary abnormalities,
epilepsy, ID

Tuberous
sclerosis

TSC1
TSC2

9
16

Inhibition of translation via mTORC1
inhibition [127]

~ 50%
[124]

Benign tumours in multiple organs, epilepsy

Angelman
syndrome

UBE3A 15 Targeting of proteins for
destruction via ubiquitin-tagging [41]

~ 30%
[124]

Cheerful demeanour, microcephaly, epilepsy,
speech deficits, sleep disturbance, epilepsy, ID

Abbreviations: FMR1 fragile X mental retardation 1, FMRP fragile X mental retardation protein, MECP2 methyl-CpG-binding protein 2, TSC1 tuberous sclerosis 1,
TSC2 tuberous sclerosis 2, UBE3A ubiquitin-protein ligase E3A
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Modelling ASD in rodents: a platform for proof-
of-principle studies
The field of gene therapy is littered with examples of
therapies which failed to translate from their preclinical
promise. In many cases, blame can be attributed to the
predictive validity of the animal model used, which is it-
self related to its construct validity (i.e. how well the
model mimics disease aetiology) and face validity (i.e. how
closely the model’s phenotype represents the human
disorder) [39].
Given the challenges clinicians have faced in develop-

ing diagnostic criteria for ASD [40], and how various so-
cial traits often appear to be inherently ‘human’ qualities
(although this is itself highly contested [41]), it is little
wonder that generating ASD animal models with good
face validity has been challenging. Nevertheless, whilst
caution should always be taken when ascribing behav-
ioural outcomes in animals to autism, various monogenic
ASD rodent models have capably demonstrated quantifi-
able social and communicative behavioural traits [42–44],
laying the ground for preclinical therapeutic studies.

As a caveat, it must be noted that a major limitation of
ASD animal models relates to their inability to reflect
heterogeneous environmental influences on the ASD
phenotype, with various toxic, inflammatory and psycho-
social factors difficult to incorporate in robust, reprodu-
cible animal models. This deficit in construct validity is
especially relevant in modelling polygenic ASD, in which
the gene × environment interaction plays a more funda-
mental role [45], and which therefore bears a particular
risk for future translational work.

Locating and reversing ASD pathophysiology
Identifying specific cells and circuits dysregulated in ASD
is crucial in gene therapy design, as vectors may be tar-
geted to specific brain regions or cell types (discussed in
detail later). In particular, nascent data suggest the hippo-
campus, cerebellum and corpus callosum contain key
pathogenic circuits [34, 46–48], whilst influential cell
types include pyramidal cells, Purkinje cells and glial cells
[34, 49].

Fig. 1 Proteins known to cause monogenic ASD are shown in red. Some of these, including TSC1/2, directly impact on ribosomal translation via
the AKT-mTORC1 (mechanistic target of rapamycin complex 1) pathway, leading to altered synaptic protein expression and hence altered synaptic
function. Others feed into this loop at the level of transcript production (MECP2 [125]) and selection (FMRP [123]) and protein degradation (UBE3A
[128], not shown). Many other ASD-linked proteins also act within this synaptopathic loop, including various cell adhesion molecules (e.g. neuroli-
gins [NLGNs], neurexins [NRXNs] [129, 130]), scaffolding proteins (e.g. postsynaptic density protein 95 [PSD95] [131]), cytoskeletal proteins (e.g. dis-
rupted in schizophrenia 1 [DISC1] [132]), receptors (e.g. AMPA, NMDA, mGluR [133, 134]) and DNA-binding proteins (e.g. chromodomain-helicase-
DNA-binding protein 8 [CHD8] [135, 136]). The entire rapidly expanding list of over 900 ASD-linked genes can be found at the Simons Foundation
Autism Research Initiative (SFARI) database (https://gene.sfari.org/database/human-gene/)
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Recent technological advances have begun to elucidate
the relationship between cell type-specific function and
particular ASD endophenotypes. For example, in a RS
mouse model, cre/lox-mediated deletion of MECP2 spe-
cifically from forebrain glutamatergic neurons led to a
partial disease phenotype, with deficits in social behav-
iour and motor coordination, but preserved locomotor
activity and fear-conditioned learning [50]. Meanwhile,
in a TSC mouse model, chemogenetic excitation of the
Right Crus I (RCrusI) region of the cerebellum—an area
consistently noted to be altered in the ASD brain in
neuroanatomical and neuroimaging studies [51, 52]—
was sufficient to specifically rescue social impairments,
without rescuing repetitive or inflexible behaviours [53].
Within individual circuits, it appears that different

ASD mutations may have opposing effects on synaptic
function. For example, TSC2+/− and FMR1−/y knockouts
appear to have opposite effects on mGluR-dependent
long-term depression (LTD) in the hippocampus, whilst
mice bred with both mutations balance each other out
at the synaptic and behavioural levels [54]. Such data
not only exemplify the heterogeneic nature of ASD but
also highlight the necessity of optimal synaptic control,
and are the first hint that a successful gene therapy must
walk a narrow therapeutic tightrope between over- and
under-stimulating synaptic transmissions.
A crucial further question is whether autistic pheno-

types can be reversed or are neurodevelopmentally fixed.
Remarkably, an array of studies in different monogenic
ASD animal models have consistently demonstrated the
potential for reversal of established neuronal dysfunc-
tion, either after pharmacological intervention or genetic
reactivation of silenced alleles [55–60]. These findings
imply that postnatally, indeed post-symptomatically, the
genetic horse may not yet have bolted, and genetic cor-
rection via a delivered vector might be useful in treating
cognitive dysfunction.

Delivering gene therapies to the CNS
If the ASD phenotype is reversible rather than neurode-
velopmentally fixed, as implied by studies in monogenic
animal models, then it follows that continuous genetic
correction will be necessary for a sustained therapeutic
effect. Currently, only viral packaging systems have com-
bined efficient transduction with long-term gene expres-
sion in vivo [61] (although, as will be discussed later,
certain ASD conditions may be amenable to non-virally
delivered antisense nucleic acid therapies).
Of the viruses which can transduce post-mitotic cells,

rAAVs have emerged as the principal CNS delivery can-
didate [62]. This is based upon their relatively low im-
munogenicity (compared to adenovirus and herpes
simplex virus), limiting the likelihood of an encephalitic

immune response, their ability to persist in episomal
form, reducing their oncogenic potential (compared to
retroviruses [63, 64]), and their high production titres
[12]. Indeed, rAAV vectors have already been used safely
in a number of early clinical studies in CNS gene ther-
apy, in disorders ranging from SMA to idiopathic Alz-
heimer’s disease [65].
Optimising cell-specific targeting is critical in maxi-

mising the number of transduced target cells/dose and
limiting off-target toxicity. There are two major ways in
which the spatial dynamics of rAAV vectors can be ad-
justed. Firstly, the properties of the vector itself can be
modified, to include a cell type-selective capsid (e.g.
AAV9 is particularly neurotropic [66, 67]) and/or pro-
moter [68].
Secondly, the mode of delivery can be adjusted. Histor-

ically, rAAV vectors have been delivered intraparenchy-
mally via stereotactic CNS injection, leading to high local
concentrations with limited vector spread [69]. Although
invasive (each injection requiring a craniotomy), such a
localising method of delivery might have utility in correct-
ing specific dysregulated ASD circuits linked to particular
clinical endophenotypes, analogous to the recent improve-
ment in motor scores seen after lentiviral vector delivery
of a dopamine-producing gene therapy to the nigrostriatal
pathway in Parkinson’s disease [70].
However, ASD appears to involve global synaptic dys-

regulation and thus will require global CNS gene correc-
tion to fully reverse cognitive phenotypes [71, 72]. The
discovery that rAAV9 crosses the blood-brain barrier
(BBB) and globally transduces CNS neurons and glial
cells [73], and the recent derivation of more efficient
BBB-traversing rAAVs by targeted evolution [74], has
opened up the possibility of using intravenous injection
in ASD gene therapy.
It remains to be seen, however, whether side effects re-

lating to peripheral tissue transduction, as well as the
presence of neutralising circulating antibodies (anti-
AAV9 antibodies are present in 47% of humans), will
preclude intravenous administration in various ASDs
[75–77]. Changes to the viral vector nucleic acid se-
quence outside of the transgene—such as the inclusion
of ‘detargeting’ sequences recognised by micro RNAs
(miRNAs) expressed specifically in off-target cells [78]—
might circumvent the former issue, but use up highly
limited space (rAAV’s packaging capacity is limited to
~ 5 kb [79]). The latter issue may be negotiated by
the use of engineered rAAV capsids, which may have
lower neutralising antibody seropravalences [80].
An alternative to systemic delivery is intrathecal ad-

ministration, which potentially combines (relatively) safe
administration and global CNS transduction with fewer
peripheral complications, and a higher spatial resolution
limiting the dose requirements. However, there are
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conflicting data regarding the ability of intrathecally de-
livered rAAV to efficiently transduce areas outside the
spinal cord [81], as well its own ability to avoid both per-
ipheral leakage [82] and a neutralising antibody response
[83, 84]. Of note, an intrathecal AAV9 approach has
been corrective in a model of giant axonal neuropathy
[85] and has progressed to a clinical trial.

Gene therapy strategies in monogenic ASD
Gene replacement
In ASD disorders defined by loss of function mutations
(e.g. RS, FXS, TSC), simple gene replacement may re-
store synaptic function [12]. Given the limitations im-
posed by imperfect gene delivery strategies, a key
question is whether sufficient transduction of target cell
types can be attained to exert phenotypic benefit.
Encouragingly, a number of studies using monogenic ani-

mal models have demonstrated behavioural improvements
after rAAV-delivered gene replacement. In a RS mouse
model, systemic delivery of a rAAV9-MECP2 vector suffi-
cient for ~ 10% CNS transduction (of principally neuronal
cells) led to moderate behavioural improvements [86, 87].
Meanwhile, at an ~ 6-fold higher vector dose, ~ 25% CNS
transduction resulted in marked behavioural and pheno-
typic improvements [88]. Finally, it was recently demon-
strated that rAAV-mediated delivery of even a fragment of
the MECP2 gene (lacking N- and C- terminal regions along
with a central domain) led to phenotypic improvement in
RS mice, potentially allowing extra room for construct
modifications to aid target cell transduction and expression
[89]. Similarly, substantial phenotypic improvements were
seen in studies using FXS and TSC models after intra-CNS
delivery of replacement genes, although none of these stud-
ies quantified CNS transduction [90–92].
Although a cause for optimism, none of the above

studies evidenced total phenotypic reversal after gene re-
placement. Such incomplete phenotypic reversal may be
secondary to insufficient CNS transduction. In RS for
example, ~ 80% gene reactivation in neuronal cells ap-
pears to be sufficient and necessary for total phenotypic
reversal [56, 93]. However, increasing the vector dose in
order to increase transduction must be balanced against
the risk of dose-related toxicity. This may occur second-
ary to off-target cell transgene expression: for example,
transgene-specific liver toxicity was seen at high doses of
rAAV9-MECP2 [86, 94], possibly due to MECP2’s role
in liver metabolism [95].
Toxicity may also occur secondary to supraphysiologi-

cal expression in target cells. For example, after
rAAV-mediated delivery of FMRP in FXS, toxicity devel-
oped at 2.5-fold expression above wild type [96], whilst
duplication of MECP2 leads to MECP2 duplication syn-
drome in males [97–99]. Such toxicity may occur even
at low transduction percentages due to uneven vector

distribution within the CNS or, in the case of X-linked
disorders in females, due to a mosaic pattern of CNS ex-
pression caused by random X-inactivation [100]. Re-
assuringly, a fragmented version of the MECP2
promoter appeared to limit MECP2 expression to
physiological levels in both wild type and MECP2null/x

female mice, even at vector doses leading to ~ 25% CNS
transduction [88].
Nonetheless, further studies are required to pinpoint

the optimum balance between CNS transduction and
on-target toxicity in various ASD syndromes. Addition-
ally, future gene replacement studies must better charac-
terise the relationship between gene dose and dendritic
function (which was not assessed in any of the above
studies).

RNA knockdown
Gene expression can be silenced by sequence-specific
knockdown of mRNA transcripts using techniques such
as antisense oligonucleotides (ASOs) and short interfer-
ing RNAs (siRNAs), which use the exquisite specificity
conferred by Watson-Crick base pairing to bind particu-
lar mRNA transcripts and prevent their translation (for
a detailed mechanism see ref [101]). These nucleic acids
are typically relatively easy to manufacture, can be modi-
fied to limit degradation and inflammation, and do not
require a viral vector (although long-term expression of
ASOs is possible using viral delivery of short hairpin
RNAs [shRNAs]) [101, 102]. Indeed, such therapies are
already being used in the treatment of SMA and in clin-
ical trials for Huntington’s disease [103, 104].
These techniques are principally useful when total or

partial knockdown of a particular transcript may restore
synaptic function. For example in MECP2 duplication syn-
drome, halving MECP2 expression was shown to restore
cellular function and phenotype postnatally in a condi-
tional MECP2-overexpressing mouse model [105]. In the
same study, intraventricular delivery of ASOs (delivered at
a constant rate by a pump) specifically targeting MECP2
led to widespread ASO distribution in the CNS, effective
knockdown of MECP2 to nearly wild type levels, and sus-
tained phenotypic reversal (~ 10 weeks) [105].
Another strategy in which RNA silencing may be use-

ful is in knocking down a gene which inhibits a target
gene’s expression, i.e. disinhibition. For example, triplica-
tion of 15q11-13 leads to a relatively common and
highly penetrant type of autism linked to increased ex-
pression of UBE3A (which functions as a transcription
regulator in addition to its ubiquitin ligase function) and
subsequent downregulation of Cerebellin 1 Precursor
(Cbln1), a synaptic organising protein, in the ventral teg-
mental area (VTA) [106]. Thus, knockdown of UBE3A
could be used to restore sufficient Cbln1 expression in
the VTA, which has already been shown to effect
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phenotypic change after cre/lox-mediated restoration in
a UBE3A-triplicated mouse model [106].
Another application of this strategy could be in AS,

where the long non-coding UBE3A antisense transcript
(UBE3A-AST) causes imprinting of the paternal UBE3A
allele, ensuring that a loss of maternal UBE3A allele
function yields the AS phenotype (another example of
how genetic defects in ASD may be bidirectional, with
optimal gene expression in specific brain regions cru-
cial). Indeed, a recent paper demonstrated that a single
intracerebroventricular injection of a degradation-
resistant ASO targeting UBE3A-AST in an adult AS
mouse model led to specific and sustained reductions in
UBE3A-AST levels, with partial restoration (~ 40%) of
UBE3A levels throughout the CNS [107].
Interestingly, in the same study, whilst motor deficits

were restored, other behaviours—such as anxiety and re-
petitive behaviours—were not. A later study, using
Cre-dependent UBE3A reactivation in an AS mouse
model, showed a temporal dependence for specific
phenotype reversal, with anxiety and repetitive behav-
iours requiring gene reactivation during early develop-
ment, whilst motor deficits could be restored into
adulthood [108]. Such temporal factors have not been
thoroughly investigated in other monogenic ASDs but
are clearly critical when considering the time point of
useful intervention in humans.
Finally, in a similar vein to excessive gene replacement,

hyper-knockdown of target RNA may lead to rebound
toxicity in both target cells and off-target cells. Further-
more, both ASOs and siRNA may cause unpredictable
off-target knockdown [109]. From this perspective, the
requirement for regular intra-CNS administration of
ASOs is a double-edged sword in ASD: whilst on the
one hand, it is clearly less convenient than a once-off in-
jection of viral vector, on the other hand, it allows for
the possibility of dose uptitration and determination of
an optimal therapeutic level.

Gene editing
One of the most exciting recent developments in gene ther-
apy is the advent of easily customised sequence-specific
editing techniques, such as CRISPR (clustered regularly
interspaced short palindromic repeats)-Cas9, enabling ei-
ther correction of a genetic mutation via non-homologous
recombination (providing there is a suitable template) or
gene silencing via non-homologous end-joining [110]. Such
techniques would generally enable gene expression at
physiological levels in target cells, negating the problems of
transgene-associated toxicity seen with both gene replace-
ment and RNA knockdown techniques.
Unfortunately, at least in vivo, gene editing techniques

still remain a distant therapeutic prospect, with a wealth
of technical hurdles to overcome, including how to

deliver gene editing systems to target cells, how to in-
crease the efficiency of editing, and how to avoid
off-target editing [111, 112]. Still, recent work by
Doudna and colleagues provides optimism in this regard,
with the demonstration of greatly improved editing of
post-mitotic neurons in adult mouse brains using
cell-penetrating peptides tagged onto Cas9 ribonucleo-
protein complexes [113].

Prospects for gene therapy in polygenic ASD
As previously mentioned, in comparison with mono-
genic ASD, polygenic ASD has a greater environmental
component driving its phenotype [45]. In this respect,
damaging, nonsynonymous postzygotic mutations in
whole-exome sequences from the largest collection of
trios with ASD were recently identified, with some of
these genes being particularly enriched for expression in
the amygdala, a key brain region for social conditioning
and learning [114]. Such factors, combined with the
current paucity and constructional limitations of animal
models in polygenic ASD, make it a less obvious target
for gene therapy.
Nonetheless, despite the bewildering array of rare gen-

etic mutations linked to polygenic ASD, an important
focus of these mutations appears to be in the regulation
of synaptic function, with diverse ASD mutations poten-
tially connecting aberrant translational inputs and out-
puts (Fig. 1) [34]. For example, in mice, deletion of the
translational repressor Eukaryotic translation initiation
factor 4E-binding protein 2 (4E-BP2) led to overexpres-
sion of the NLGN class of cell adhesion molecules [115],
mutations of which have been causally linked to ASD
[46, 116, 117]. Furthermore, such deletion resulted in
disruption of the ratio of excitatory to inhibitory synap-
tic inputs, as well as an ASD behavioural phenotype,
which was corrected by NLGN1 knockdown [115].
This leads to the idea that many ASD mutations might

be treated by fine-tuning the expression of influential
proteins acting within dynamic translational loops. The
apparently fundamental role of the PI3K-AKT-mTOR
pathway in various causes of monogenic ASD [118], as
well as the phenotypic reversal seen using small mol-
ecule inhibitors of mTORC1 preclinically [119], suggests
that this pathway may be a critical target for gene ther-
apy in certain cases of ASD.
However, given ASD’s heterogeneity, it is once again im-

portant not to focus myopically on a single pathway. Rather,
instead of embarking on a ‘one size fits all’ therapeutic ap-
proach, the effect of any particular ASD mutation on trans-
lational output and synaptic function should be categorised,
before deciding whether and how to target a particular gene
or pathway. For instance, NLGN3 knockout mice demon-
strate a FXS-like disruption of mGluR-dependent synaptic
plasticity [120], suggesting that either FMRP overexpression

Benger et al. Molecular Autism  (2018) 9:39 Page 6 of 10



or PI3K-AKT-mTOR pathway knockdown (given the afore-
mentioned opposition of these two pathways) might correct
this phenotype.
Finally, recent evidence has emerged of ASD behaviours

caused by amino acid deficits [121, 122]. For example,
homozygous dysfunction of the BBB solute carrier trans-
porter 7a5 (SLC7A5) and corresponding CNS loss of
branched chain amino acids (BCAAs) has been linked to
ASD, which is reversible in mouse models upon
intra-CNS administration of BCAAs [122]. Thus, direct
protein replacement therapy might provide an important
additional therapeutic avenue in certain ASD cases. It is
also possible to imagine using gene therapy as an adjunct
here: for example, combining systemic BCAA replacement
with vector-delivered SLC7A5 targeting BBB cells.

Conclusions
Given the heritable component of ASD, gene therapy of-
fers a promising alternative to conventional small mol-
ecule therapies. Preclinical studies over the last 5 years
using animal models displaying autism-like traits have
demonstrated that directly altering gene expression using
rAAV-delivered transgenes can reverse the behavioural
phenotype, either via gene replacement or RNA knock-
down. Such studies establish proof-of-concept and set up
a platform for clinical translation in various monogenic
ASDs, with RS being a frontrunner in this regard.
However, major hurdles remain, not least the fact that

the majority of ASD disorders, even monogenic ones,
show variable penetrance, with epistatic and gene × envir-
onment interactions determining phenotype. Not only is
such genetic and environmental heterogeneity inherently
difficult to model, hindering clinical translation, but also
in clinical trials that do go ahead, ASD subgroups that
benefit from a particular treatment may be lost amongst
other unsuitable subgroups. Furthermore, we still do not
know whether, or in which cases, epigenetic factors may
preclude reversibility in humans. Cyclically, this brings us
back to the question of animal models and whether these
have sufficient construct validity to actually begin to an-
swer such questions in the first place.
A number of additional questions remain: Firstly, can

vector design be optimised to the extent that intraven-
ous delivery achieves sufficient CNS transduction with-
out peripheral toxicity? Secondly, where is the optimum
balance between CNS transduction and the risk of
on-target transgene-related toxicity for each ASD syn-
drome? Thirdly, will demonstrations of acceptable levels
of CNS toxicity hold when studies commence in larger
animal models? Fourthly, is there a time point beyond
which some or all autistic features lose their reversibil-
ity? Answering these questions will be key to moving
ASD gene therapy into clinical trials, and perhaps
one day generating a genetic treatment for ASD.
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