
RESEARCH Open Access

Diffusional kurtosis imaging of the corpus
callosum in autism
Yu Veronica Sui1,4* , Jeffrey Donaldson1, Laura Miles1, James S. Babb1, Francisco Xavier Castellanos2,3

and Mariana Lazar1,4*

Abstract

Background: The corpus callosum is implicated in the pathophysiology of autism spectrum disorder (ASD).
However, specific structural deficits and underlying mechanisms are yet to be well defined.

Methods: We employed diffusional kurtosis imaging (DKI) metrics to characterize white matter properties within
five discrete segments of the corpus callosum in 17 typically developing (TD) adults and 16 age-matched
participants with ASD without co-occurring intellectual disability (ID). The DKI metrics included axonal water fraction
(faxon) and intra-axonal diffusivity (Daxon), which reflect axonal density and caliber, and extra-axonal radial (RDextra)
and axial (ADextra) diffusivities, which reflect myelination and microstructural organization of the extracellular space.
The relationships between DKI metrics and processing speed, a cognitive feature known to be impaired in ASD,
were also examined.

Results: ASD group had significantly decreased callosal faxon and Daxon (p = .01 and p = .045), particularly in the midbody,
isthmus, and splenium. Regression analysis showed that variation in DKI metrics, primarily in the mid and posterior callosal
regions explained up to 70.7% of the variance in processing speed scores for TD (p = .001) but not for ASD (p > .05).

Conclusion: Decreased DKI metrics suggested that ASD may be associated with axonal deficits such as reduced axonal
caliber and density in the corpus callosum, especially in the mid and posterior callosal areas. These data suggest that
impaired interhemispheric connectivity may contribute to decreased processing speed in ASD participants.
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Background
Although the characterization of autism has evolved
since Leo Kanner’s first identification of the syndrome in
1943, the specific genetic and neuronal components that
contribute to the various symptoms are still largely un-
known. In the 5th edition of Diagnostic and statistical
manual of mental disorders [4], autism spectrum dis-
order (ASD) describes a range of neurodevelopmental
disorders that are characterized by restrictive/repetitive
behaviors and difficulties in social interaction and com-
munication [18, 40].
The literature suggests that the pervasive deficits in social

communication and cognitive performance observed in
ASD reflect disruptions in neural connectivity throughout

the brain, including both atypical functional connectivity
[5, 8, 13, 33, 35] and alterations in the properties of white
matter pathways [7, 33, 53, 62]. Numerous findings from
histological and imaging studies have implicated the corpus
callosum, the most prominent cerebral white matter
tract, in the pathophysiology of ASD [6, 19, 25, 43, 46, 56].
Situated in the center of the mammalian brain, the corpus
callosum consists of around 200 million fibers that radiate
bilaterally to various cortical regions and facilitate inter-
hemispheric communication [55]. Several schemes have
been proposed to partition the corpus callosum into seg-
ments connecting distinct brain regions. A parcellation
proposed by Witelson [61] segments callosum in five parts
in the mid-sagittal plane. Hardan et al. [22] used the
Witelson subdivisions but further divided the corpus
callosum into seven segments, whereas Hofer and Frahm
[26] proposed a revised five-division scheme based on
tractography data and callosal connectivity to cortical
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regions. Specifically, anterior parts of the corpus callo-
sum, including rostrum and genu, connect prefrontal
and premotor areas; anterior and posterior midbody
segments connect motor and somatosensory areas; the
isthmus links superior temporal and posterior parietal
regions; and the most posterior callosal segment, the
splenium, connects superior parietal, occipital, and inferior
temporal regions [14, 22, 26, 27, 50].
Prior morphometric and diffusion imaging studies have

revealed that, compared to neuro-typical participants,
autistic subjects have smaller volumes of both the entire cal-
losum [2, 23] and callosal sub-regions [22, 56], specifically
decreased white matter density [12, 53, 59], and increased
diffusivity [7, 38, 47]. These findings support the aberrant
neural connectivity hypothesis of ASD [5, 8, 34], which
posits that the social and cognitive symptoms by which
ASD is defined are related to a decrease in neural connectiv-
ity resulting from pervasive abnormalities in long-range
white matter pathways. Abnormal myelin development in
the corpus callosum has also been proposed [20] although
evidence supporting this hypothesis remains incipient.
Despite general agreement on the involvement of the

corpus callosum in ASD pathology, specific results diverge.
This may be in part due to differences across studies in
imaging and analysis methods. Nevertheless, the precise
morphological variations as well as how changes in fiber
tracts and microscopic features in the callosum are related
to the diverse symptoms in ASD are still open for discus-
sion [35, 36, 53]. The advent of more intricate diffusion
imaging techniques and mathematical models may provide
a more refined description of white matter microstructure
and its relationship to symptoms and behavior.
Traditional diffusion tensor imaging (DTI) is based on

a simplified Gaussian distribution of water diffusion that
is problematic when encountering complex microscopic
organizations in which diffusion may be non-Gaussian.
Diffusional kurtosis imaging (DKI) aims to detect non-
Gaussian diffusive behavior by introducing kurtosis as a
marker reflective of tissue heterogeneity [51]. Moreover,
the interpretation of DKI metrics can be further augmented
by employing multi-compartment models for white matter
that yield more detailed structural properties [17, 45]. For
example, the two-compartment model separates MR signal
contributions from intra-axonal and extra-axonal water
while neglecting myelin water contributions, as they are
not detectable with the imaging parameters employed in
typical diffusion imaging studies [16, 17].
In two-compartment DKI, diffusion in each compartment

is measured by a different diffusion tensor. One of the prin-
cipal parameters of interest is the axonal water fraction
(faxon), which is the fraction of MRI-visible intra-axonal
water relative to total intra- and extra-axonal water. The
model also provides diffusivity metrics that characterize the
properties of the two compartments: intra-axonal

diffusivity, Daxon, which is assumed to measure along the
axonal axis, and extra-axonal axial (ADextra) and radial
(RDextra) diffusivities, which are assumed to reflect water
diffusion in the extra-cellular space along and perpendicular
to axons, respectively [38]. Each of these parameters
gives more detailed information about specific proper-
ties of white matter axonal packing than DTI. faxon
changes with the water signal inside axons so that it is
related to density of axonal packing and axonal caliber.
The more densely packed or larger axons are, the higher
faxon is. Daxon reflects intra-axonal microscopic properties
including variations in the size and number of intra-axonal
structures such as microfilaments or mitochondria. In
the extra-axonal environment, ADextra is assumed to re-
flect structures such as oligodendrocytes and astrocytes
or extracellular inflammation. RDextra is influenced by
myelination since the myelin sheath impedes the diffu-
sion of water perpendicular to the axon packing direc-
tion [9, 17].
In the current study, we employed DKI along with

the two-compartment model to compare intra- and extra-
axonal diffusion properties in five discrete callosal areas in
typically developing controls versus age- and IQ-matched
ASD subjects. Our goal was to increase specificity and
sensitivity in identifying callosal microstructural deficits in
ASD. We also investigated the relationship between callo-
sal white matter properties and cognitive measurements
indexing information processing based on two observa-
tions: (1) the corpus callosum is known to support process-
ing speed [10, 44], and (2) impaired processing speed has
been consistently reported in ASD [21, 54]. Thus, we tested
whether indices of processing speed can be predicted by
callosal white matter DKI properties.

Methods
Participants and design
Seventeen typically developing (TD) controls and 16 indi-
viduals aged 18 to 25 years old with a diagnosis of ASD and
no co-occurring intellectual disability (ID) (i.e., IQ > 80)
participated in the study. The study was approved by the
NYU School of Medicine Institutional Review Board. All
participants provided informed consent at the time of their
visit. TD participants had reported no personal or family
history of ASD or other psychiatric conditions. None of the
participants reported previous head injury or organic brain
damage.
Autism Diagnostic Observation Schedule (ADOS) [41]

and Autism Diagnostic Interview-Revised (ADI-R) [42]
were used to confirm diagnosis in ASD participants.
Four of the ASD participants had either co-occurring or
history of psychiatric problems according to self-report,
including anxiety, depression, post-traumatic stress dis-
order, obsessive-compulsive disorder, and history of
attention-deficit/hyperactivity disorder.
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All participants received IQ assessments based on
Wechsler Adult Intelligence Scale-III (WAIS-III) [58].
The WAIS-III IQ scores were used to assess cognitive
ability and confirm the lack of ID in all participants. The
WAIS-III generates a Full Scale IQ (FSIQ), which further
includes four indices: Verbal Comprehension Index (VCI),
Perceptual Organization Index (POI), Working Memory
Index (WMI), and Processing Speed Index (PSI). Decreased
processing speed is one of the more consistent findings in
ASD [21, 54], and it has been proposed to be related to
abnormalities in white matter pathways [38]. The two sub-
tests composing the WAIS-III PSI, Digit Symbol-Coding
(DigitSC) and Symbol Search (SS), were further examined
to assess if they are governed by different relationships to
callosal microstructural properties.
Anatomical T1-weighted (T1w) images and diffusion

data were collected for all participants. Several diffusion
metrics were calculated as previously described [38] and
employed to compare white matter properties in ASD
participants versus TD individuals. Multivariate regres-
sion analyses of processing speed-related indices with
the diffusion metrics were conducted to explore the im-
pact of white matter characteristics in the corpus callo-
sum on cognitive performance.

Data acquisition and processing
Diffusion imaging scans were performed on a 3T Siemens
Trio System (Siemens, Erlangen, Germany) using a 12-
channel array coil. Diffusion data was obtained using a
twice-refocused diffusion-weighted echo planar imaging se-
quence with a GRAPPA parallel imaging factor of 2 and
24 reference lines. Between 55 and 60 slices were ac-
quired using 2.3 × 2.3 × 2.3mm3 isotropic voxels. Other im-
aging parameters included TE= 97ms and TR= 8100ms.
Diffusion-weighted data was obtained for two diffusion
weighting (b = 1000 and 2000 s/mm2) with 12 non-collinear
encoding directions acquired for b = 1000 s/mm2 and
42 non-collinear encoding directions acquired for b =
2000 s/mm2. Each diffusion-weighted acquisition was
repeated twice to increase signal-to-noise ratio. Ten images
with b = 0 s/mm2 were also collected. To describe B0-field
inhomogeneities, field map images consisting of one phase
image and one corresponding magnitude image were
acquired coplanar to the diffusion images using a Siemens
provided sequence. The product sequence acquired two
gradient echo images with different TE (TE1 = 8ms and
TE2 = 10.46ms) to produce phase and magnitude images
that map B0-field inhomogeneities.
The images were preprocessed and corrected for motion

and distortions from eddy currents and magnetic field
inhomogeneities using in-house developed code in Matlab
(Mathworks, Natick, Massachusetts), Interactive Data
Language (IDL, Exelis Visual Information Solutions,
Boulder, Colorado), and FMRIB Software Library (FSL4.1,

http://www.fmrib.ox.ac.uk/fsl). The diffusion data was first
smoothed using a Gaussian filter with σ = 1.2mm to im-
prove the quality of DKI fitting. Eddy currents and motion
were corrected with in-house written scripts using FSL
flirt [31, 32]. FSL prelude, fugue, and fslmaths were used
to apply the field map correction to the diffusion images
[48]. Several steps were employed as recommended by the
FSL guide, i.e., transforming the phase image to radians and
unwrapping it, calculating and regularizing the shiftmap,
and aligning the shiftmap to the diffusion images and
unwarping it. The quality of the correction was visually
assessed by overlapping the FA image onto the T1-weighted
image that was registered to the diffusion space. A good
correspondence between these two images was obtained
in all subjects.
Apart from distortion correction, all images were visually

examined for signal dropouts resulting from cerebrospinal
fluid pulsations or blurring from movement. Both slices
and volumes affected by signal dropout or blurring from
either motion or cerebrospinal fluid pulsations were
removed from the analyses. In all but two participants, the
presence of such artifacts was minimal with at most one
or two volumes removed from the total of 118 collected.
Thus, we estimated that removal of this data had a negli-
gible effect on the DKI fit. We note that in all of these
cases, all encoding directions were represented since data
was available for at least one of the two averages collected.
Two data sets from the ASD group had more motion,
and thus, approximately 12% data was removed. Again,
motion occurred at different times during the two acquisi-
tions, and thus, most encoding directions were available
for analyses with only one or at most two encoding direc-
tions out of 54 lost. We note that the number of encoding
directions employed here was well in excess of the
minimum number of encodings needed for DKI (n = 21).
Exclusion of the two more affected data sets from analyses
did not affect between-group differences [38], and thus,
data sets for all participants were included. Following
visual image inspection, the two repeated acquisitions
were combined using a weighted average approach that
included only viable data.
The calculation of DKI metrics was conducted using

in-house written software, which was based on the non-
Gaussian water diffusion assumption that allows estimations
of both diffusion and kurtosis tensors using a constrained
linear least squares regression approach [52]. The kurtosis
tensor data were used in the calculation of intra- and
extra-axonal diffusivities, Daxon, ADextra, and RDextra and the
axonal water fraction, faxon (for details see [38]). The diffu-
sion tensor obtained as part of the DKI fitting was used to
derive FA and axial (AD) and radial diffusivity (RD) maps.
The T1w images along with FreeSurfer software

(Desikan-Killiany atlas) were used to obtain a five-region of
interest (ROI) segmentation of the midline corpus callosum
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in each subject (Fig. 1). These ROIs were registered to the
diffusion data and employed to generate five callosal seg-
ments that extended from the midline bilaterally to the cor-
ona radiata. To limit the effects of partial volume averaging
with neighboring cerebrospinal fluid, we limited each ROI
to voxels with mean diffusivity (MD) smaller than 1.5 ×
10−3mm2/s, based on previous work describing the normal
range of MD values in the human brain (e.g., [11]). Mean
values of each of the diffusion metrics were derived for
each of the five resulting callosal segments.

Statistical analyses
Statistical analyses and graphing were conducted with
SPSS 20.0 (IBM, Armonk, NY) and Matlab. One SS
value was missing, which resulted in a missing value in
the corresponding PSI score. We replaced the SS value
with a value imputed by regression from DigitSC scores
(i.e., the other subtest in PSI). Between-group differences
for demographic characteristics and IQ scores were
analyzed individually using t tests. Two-way analysis of
variance (ANOVA) was applied to the diffusion metrics
with the five callosal segments included as a blocking
factor to account for the lack of statistical independence
among DKI measures derived for the five segments per
participant. Equal variance was assumed for DKI measures,
and Levene’s test was used to support the assumption.
Separate two-way ANOVAs were performed for each of
the four DKI metrics, and overall between-group differ-
ences across segments were assessed. Post hoc pairwise
comparisons were then used to further evaluate differ-
ences in callosal segments. Correction for multiple com-
parisons was conducted using the Benjamini-Hochberg
approach. Given the relatively small sample size employed
in this study, a moderate approach that accounted for the

five different regions examined was employed to minimize
type I errors while maintaining statistical power. Uncor-
rected p values are presented in the results, with values
reaching significance after correction highlighted with an
asterisk.
Building on findings from ANOVA, multivariable regres-

sion analyses for processing speed scores and DKI metrics
in the callosal segments were run to test if processing speed
can be predicted by diffusion metrics in each segment of
the corpus callosum with DigitSC and SS scores used as
outcome variables, and faxon, Daxon, ADextra, and RDextra

derived from five callosal segments used as predictors. For
comparison with other datasets, bivariate correlations are
reported in Additional file 1.
In all model fitting, we controlled for the number of

callosal voxels by including it at the first step as a covari-
ate. Previous work [57] has shown that the size of corpus
callosum influences the degree of partial volume averaging
with nearby structures (e.g., cerebrospinal fluid) and thus
may induce artificial alterations of intrinsic callosal diffusion
properties. Therefore, to counteract the effect of partial
volume, we rejected voxels with abnormally high MD (as
described in the “Data acquisition and processing” section)
and added the number of voxels as a covariate in our main
analyses. We note that analyses conducted without control-
ling for the number of voxels yielded similar results and are
thus not included here. Subject age was also not included
as a covariate since no significant relationship was found in
preliminary analyses between age and DKI measures, and
WAIS-III scores account for age in the scoring process
[58]. As preliminary data analysis revealed different patterns
of correlation in the two groups, regression analyses were
carried out separately within each group.

Results
Demographic data and IQ score
There were no significant between-group differences in age
(p = .678), handedness (p = .809), or Full score IQ (p = .143).
However, in one of the four indices in the intelligence test,
PSI, ASD participants (93.44 ± 18.37) scored substantially
lower than TD controls (108.71 ± 14.28) (p = .012), with
significant group differences found in both subtest scores—
DigitSC (p = .028) and SS (p = .008) (Table 1).

Diffusion metrics
Two-way ANOVA revealed significant group differences
for both faxon (p = .010) and Daxon (p = .045). As demon-
strated in Fig. 2, the TD group had faxon and Daxon values
higher than the ASD group, and the effect seemed to
encompass all segments of the corpus callosum. Main
effect of segment was also significant for all four diffusion
metrics (p < .0001), suggesting varying diffusion properties
across the five callosal segments. Post hoc analyses revealed
differences between groups for faxon in callosal segments 2

Fig. 1 The five callosal regions examined in this work, depicted in
mid-sagittal cross-section: segment 1—red, segment 2—orange,
segment 3—yellow, segment 4—green, segment 5—blue

Sui et al. Molecular Autism            (2018) 9:62 Page 4 of 12



to 5 and for Daxon in callosal segment 3. After correcting
for multiple comparisons, group differences in segment 3
to 5 for faxon were found to be significant (Table 2). ADextra,
RDextra, and the number of callosal voxels did not differ
across groups. No significant between-group differences
were noted in any of the traditional diffusion tensor metrics
(Additional file 1: Figure S1).
Regression analyses showed that DigitSC can be signifi-

cantly predicted by microstructural callosal properties in
TD but not in the ASD group (Tables 3 and 4; Fig. 3).
More specifically, regression models with DKI metrics
from segments 3, 4, and 5 were found to be significant in
characterizing changes in DigitSC scores in TD (Table 3).
In addition, a strong relationship was found between SS
scores and faxon and Daxon as well as the number of callo-
sal voxels in segment 2 for TD. No similar relationships
were found in ASD subjects (Table 4).
Since a large variation in IQ was noted within the ASD

group, with two participants having extremely high IQ,
we tested if presence of outliers influenced the results by

Table 1 Summary of demographic and IQ data for the TD and
ASD groups. Significant group differences were found in
processing speed and its two component subtests, DigitSC and SS

TD (n = 17) ASD (n = 16) p value

Age 21.71 ± 2.14 21.38 ± 2.39 .678

Handedness 14.53 ± 3.59 14.81 ± 3.04 .809

Full score IQ 116.65 ± 11.98 108.88 ± 17.39 .143

Verbal comprehension index 119.18 ± 13.14 115.13 ± 23.75 .545

Perceptual organization
index

113.76 ± 15.34 107.56 ± 12.06 .208

Working memory index 107.76 ± 12.39 104.56 ± 15.40 .514

Processing speed index 108.71 ± 14.28 93. 44 ± 18.37 .012*

DigitSC 11.12 ± 2.71 8.13 ± 4.59 .028*

SS 12.41 ± 2.85 9.56 ± 2.92 .008*

*p < .05

Fig. 2 Group comparisons for DKI metrics by segment, with segment 1 to 5 representing anterior to posterior callosal region (*p < .05). Black and
red lines represent TD controls and ASD participants, respectively. Error bars depict standard error
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repeating analyses without them. Overall results remained
unchanged (Additional file 1: Figures S2 and S3).

Discussion
Callosal abnormalities in ASD
Compared with typically developing controls, ASD sub-
jects scored significantly lower in the WAIS-III processing
speed index than TD, as previously reported [21, 54].
This effect was reliably observed with both subtests,
Digit Symbol Coding (DigitSC) and Symbol Search (SS).
Correspondingly, DKI metrics faxon and Daxon were also
significantly decreased in ASD compared with TD. This
effect was primarily driven by differences in specific callosal
segments: for faxon, significant between-group differences
were found in the midbody and the posterior regions of the
corpus callosum, and for Daxon, in the midbody.
These results suggest differences in axonal caliber and/or

axonal packing of callosal regions in ASD subjects. Since
no significant group-differences were found for the two
extra-axonal DKI measures in the current study, the
microarchitecture of the extracellular environment, in-
cluding the organization of glial cells and myelination,
may not be severely affected in the current ASD sample
[38], although further work including more direct metrics
of myelin content are needed to address this hypothesis.
Moreover, future studies should assess between-group dif-
ferences across a range of ages to understand the potential
impact of development on microstructural white matter

features (e.g., axonal density, myelin content) and their
relative contribution to ASD deficits.
Incorporating existing findings of axonal organization

and topographic connectivity of the corpus callosum,
current results suggest that ASD may be characterized
by reduced axonal caliber in the corpus callosum and
differences in the axonal milieu, with larger axons in
the middle and posterior callosal regions being the
most affected [1]. Smaller diameter fibers in the corpus
callosum may interfere with interhemispheric connections
of the motor, occipital, and temporal cortices [26], thus
disrupting their functioning and altering connectivity
patterns in the whole brain.

Potential network dysfunctions in ASD
Multiple regression analyses showed that while DKI metrics
could explain an impressive proportion of the variance in
processing speed for TD subjects, the same did not hold for
the ASD group. This divergence may indicate alterations in
the underlying mechanisms supporting processing speed in
ASD individuals.
In the TD group, an overall negative correlation was

found between faxon and DigitSC (Fig. 3 and Additional file 1:
Figure S2), which is in line with previous findings showing
negative correlations between DTI-based fractional an-
isotropy metric (FA) and performance IQ score during
adolescence and young adulthood [3, 28]. Hutchinson
et al. [28] hypothesized that processing of easy tasks
often relies on intrahemispheric connections for the
benefit of fast information transfer, while complex tasks
need to recruit interhemispheric interaction to balance
processing accuracy and efficiency. In short, the corpus
callosum appears to be responsible for the effective
distribution of processing load when it exceeds intrahemi-
spherical capacity either due to increased load or impaired
intrahemispheric communication. In TD controls, the
lower faxon in the corpus callosum may reflect more profi-
cient intrahemispheric connections, which is associated
with higher performance IQ [3, 28]. Furthermore, process-
ing speed relationships with two other DKI metrics (Daxon

and RDextra) were also noted. Together, these data suggest
that multiple white matter features may contribute to
processing speed and thus may need to be accounted
for when predicting cognitive ability.
In the ASD group, the decreased faxon and Daxon and

the lack of an association between processing speed and
callosal diffusion metrics have several implications. First,
it suggests that processing speed within the ASD group,
as tested with current indices, might be primarily contrib-
uted by intrahemispheric associations instead of interhemi-
spheric callosal connections. This hypothesis is indirectly
supported by findings by Lazar et al. [38], who found
positive correlation between DigitSC score and several
intra-hemispheric association tracts in ASD subjects.

Table 2 Summary of group differences from two-way ANOVA
for DKI measures, including number of volumes, faxon, Daxon,
ADextra, and RDextra across callosal body and by callosal segment
(F, uncorrected p, and effect size partial η2 values are reported)

TD ASD F(1, 31) p η2

faxon .422 ± .020 .405 ± .014 7.47 .010* .19

faxon in segment 1 .394 ± .024 .379 ± .022 3.42 .074 .10

faxon in segment 2 .404 ± .024 .387 ± .023 4.34 .046 .12

faxon in segment 3 .429 ± .022 .411 ± .025 4.30 .029* .15

faxon in segment 4 .427 ± .023 .407 ± .016 8.52 .006* .22

faxon in segment 5 .440 ± .021 .423 ± .017 6.51 .016* .17

Daxon 1.001 ± .067 .961 ± .052 4.26 .045* .12

Daxon in segment 1 .921 ± .087 .883 ± .061 2.06 .161 .06

Daxon in segment 2 .913 ± .071 .870 ± .062 3.27 .080 .10

Daxon in segment 3 .972 ± .082 .920 ± .063 4.00 .048 .12

Daxon in segment 4 1.047 ± .094 .992 ± .088 3.10 .088 .09

Daxon in segment 5 1.073 ± .072 1.040 ± .076 1.62 .213 .05

ADextra 2.338 ± .068 2.313 ± .083 1.76 .194 .05

RDextra .940 ± .041 .926 ± .032 0.94 .339 .03

Number of volumes 2854 ± 718 2882 ± 542 0.02 .901 .00

Italics indicate p < .05 uncorrected
*Significant result after correcting for multiple comparisons using
Benjamini-Hochberg procedure with false discovery rate (FDR) set at 5%
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Table 3 Regression models for TD group describing processing speed scores’ dependence on faxon and Daxon in the mid and
posterior segments, controlling for the number of voxels (NumVox) in that segment. Adjusted R2 (i.e., R2 adjusted for the number of
predictors in the model) and uncorrected p values are reported
Model Predictors Sig. (predictors) Sig. (model) R2 (model)

1 (DigitSC) Covariate NumVox (seg1) .255 .215 .179

Investigated predictors faxon (seg1) .084

Daxon (seg1) .120

ADextra (seg1) .416

RDextra (seg1) .243

2 (DigitSC) Covariate NumVox (seg2) .511 .312 .100

Investigated predictors faxon (seg2) .284

Daxon (seg2) .080

ADextra (seg2) .213

RDextra (seg2) .429

3 (DigitSC) Covariate NumVox (seg3) .663 .025* .385

Investigated predictors faxon (seg3) .014*

Daxon (seg3) .053

4 (DigitSC) Covariate NumVox (seg3) .986 .035* .382

Investigated predictor RDextra (seg3) .019*

5 (DigitSC) Covariate NumVox (seg4) .088 .016* .429

Investigated predictors Daxon (seg4) .003*

ADextra (seg4) .056

6 (DigitSC) Covariate NumVox (seg5) .005* .001* .707

Investigated predictors faxon (seg5) .001*

Daxon (seg5) .002*

ADextra (seg5) .012*

7 (SS) Covariate NumVox (seg1) .339 .399 .040

Investigated predictors faxon (seg1) .461

Daxon (seg1) .748

ADextra (seg1) .719

RDextra (seg1) .650

8 (SS) Covariate NumVox (seg2) .004* .020* .407

Investigated predictors faxon (seg2) .026*

Daxon (seg2) .095

9 (SS) Covariate NumVox (seg3) .269 .182 .212

Investigated predictors faxon (seg3) .752

Daxon (seg3) .180

ADextra (seg3) .289

RDextra (seg3) .308

10 (SS) Covariate NumVox (seg4) .253 .366 .044

Investigated predictors faxon (seg4) .378

Daxon (seg4) .354

ADextra (seg4) .928

RDextra (seg4) .921

11 (SS) Covariate NumVox (seg1) .190 .197 .049

Investigated predictors faxon (seg1) .556

Daxon (seg1) .564

ADextra (seg1) .985

RDextra (seg1) .939

*p < .05
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Table 4 Regression models for ASD group describing processing speed scores’ lack of dependence on faxon and Daxon in the mid
and posterior segments. As in the analyses reported in Table 3, analyses controlled for the number of voxels (NumVox) in the
designated segment. Adjusted R2 (i.e., R2 adjusted for the number of predictors in the model) and uncorrected p values are reported

Model Predictors Sig. (predictors) Sig. (model) R2 (model)

1 (DigitSC) Covariate NumVox (seg1) .997 .254 .160

Investigated predictors faxon (seg1) .785

Daxon (seg1) .110

ADextra (seg1) .138

RDextra (seg1) .587

2 (DigitSC) Covariate NumVox (seg2) .614 .339 .023

Investigated predictors faxon (seg2) .371

Daxon (seg2) .950

ADextra (seg2) .498

RDextra (seg2) .836

3 (DigitSC) Covariate NumVox (seg3) .549 .738 − .1781

Investigated predictors faxon (seg3) .344

Daxon (seg3) .894

ADextra (seg3) .220

RDextra (seg3) .630

4 (DigitSC) Covariate NumVox (seg4) .407 .221 .190

Investigated predictors faxon (seg4) .061

Daxon (seg4) .812

ADextra (seg4) .099

RDextra (seg4) .524

5 (DigitSC) Covariate NumVox (seg1) .970 .870 − .2751

Investigated predictors faxon (seg1) .748

Daxon (seg1) .830

ADextra (seg1) .509

RDextra (seg1) .723

6 (SS) Covariate NumVox (seg1) .670 .372 .046

Investigated predictors faxon (seg1) .906

Daxon (seg1) .261

ADextra (seg1) .143

RDextra (seg1) .963

7 (SS) Covariate NumVox (seg2) .675 .362 .033

Investigated predictors faxon (seg2) .160

Daxon (seg2) .550

ADextra (seg2) .813

RDextra (seg2) .386

8 (SS) Covariate NumVox (seg3) .269 .339 .066

Investigated predictors faxon (seg3) .752

Daxon (seg3) .180

ADextra (seg3) .289

RDextra (seg3) .308

9 (SS) Covariate NumVox (seg4) .253 .375 .008

Investigated predictors faxon (seg4) .378
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However, the intrahemispheric pathways in ASD were
also found to have decreased faxon and Daxon [38]. Thus,
altered callosal microstructure in ASD may compromise
the ability of the corpus callosum to distribute the pro-
cessing load across hemispheres and compensate for likely
lower intrahemispheric capacity, contributing to lower
scores in processing speed indices. Second, the ASD group
may be more heterogeneous, which combined with our

relative small sample size may lead to weaker associations
between imaging and cognitive metrics. There is increasing
evidence that ASD may involve different levels of dis-
rupted excitatory/inhibitory circuits [24, 63] and noisy,
unreliable neural signals [60]. These perspectives suggest
it may be fruitful to identify ASD subgroups to better
understand ASD pathophysiology, and such work will
require substantially larger samples.

Table 4 Regression models for ASD group describing processing speed scores’ lack of dependence on faxon and Daxon in the mid
and posterior segments. As in the analyses reported in Table 3, analyses controlled for the number of voxels (NumVox) in the
designated segment. Adjusted R2 (i.e., R2 adjusted for the number of predictors in the model) and uncorrected p values are reported
(Continued)

Model Predictors Sig. (predictors) Sig. (model) R2 (model)

Daxon (seg4) .354

ADextra (seg4) .928

RDextra (seg4) .921

10 (SS) Covariate NumVox (seg1) .190 .394 .052

Investigated predictors faxon (seg1) .556

Daxon (seg1) .564

ADextra (seg1) .985

RDextra (seg1) .939
1Negative adjusted R2 values indicate poor fit of the data

Fig. 3 Partial correlation plots for one of the regression models describing digit-symbol coding score dependence on callosal diffusion metrics.
Top: model 5 for TD group (Table 3), bottom: equivalent model for the ASD group (Tables 4). Significant partial correlations are noted in the TD
but not in the ASD group
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In the current study, we found altered white matter
microstructure in the mid and posterior regions of the
corpus callosum but not in the anterior callosum, which
is consistent with hypotheses that differences in brain
organization in ASD stem from deficits in brain regions
responsible for lower-order processing (e.g., sensation
perception and motor execution). As children mature,
abnormalities in lower-order processing networks would
affect regions responsible for higher-order cognition
[39]. In the current sample of ASD, inter-hemispheric
deficits were detected in lower-order interhemispheric
networks (e.g., motor, visual, auditory). Compared to
low-functioning ASD, ASD with no ID may be character-
ized by a developmental course of less pervasive lower
deficit spread across networks, resulting in more efficient
higher-order networks, the mechanisms of which may be
worth further investigation.

Limitations and future directions
The sample size of the current study was relatively small,
which decreased statistical power. This prompted us to
choose a less strict correction procedure for multiple
comparison problem to minimize false discovery rate
while preserving statistical power. Thus, although the
observed effects were robust, replication in larger samples
is needed. Furthermore, as is generally the case in autism
brain imaging studies, we only included young adult
ASD male subjects without ID and age-matched male
controls [18]. Therefore, extension of this work to females,
children, and a broader range of functioning will be im-
portant future goals.
We also note that the white matter model we used is

based on idealized assumptions (e.g., axons are parallel
within a voxel) [17] and fitting of the diffusion data to
multi-compartment models is not trivial [29]. Despite
these potential shortcomings, initial studies comparing
imaging and histology data suggest that the results of
these models are consistent with underlying microstructure.
Both Jelescu et al. [30] and Falangola et al. [15] compared
imaging and histology results in cuprizone mouse models
and reported that correlations between metrics reflective of
axonal density (faxon) and myelination (RDextra) and their
histological counterparts follow the expected pattern. In
these studies, faxon was significantly associated with the elec-
tron microscopy-derived axonal water fraction, but not with
myelin-related histological metrics (myelin volume fraction
and g-ratio). By contrast, as expected, RDextra followed
the opposite pattern, correlating with myelin-related
histological metrics but not with the histology-derived
axonal water fraction. In addition, findings here are
consistent with a previous study employing the same
sample [38], which focused on a different set of white matter
tracts and used a voxel-based approach, tract-based spatial
statistics [49], in analyzing the data. As imaging techniques

and the accuracy of scientific models improve [37], we can
be optimistic that our understanding of the mechanisms for
complex psychiatric disorders will be expanded and refined.

Conclusion
Diffusional kurtosis imaging and a two-compartment
model suggest reduced axonal caliber of large-diameter
axons in the mid and posterior regions of the corpus cal-
losum in young male adults with ASD without ID, which
may result in atypical integration of neural signals across
brain regions manifesting in impaired processing speed.
We infer that weaker callosal interhemispheric connections
in young adults with ASD lead to greater reliance of pro-
cessing speed on intrahemispheric associations. Considering
the heterogeneity of behavioral patterns and developmental
trajectories in ASD, this hypothesis will need to be con-
firmed through longitudinal studies with larger sample
sizes.

Additional file

Additional file 1: Figure S1. Traditional diffusion metrics for TD and
ASD group (fractional anisotropy, FA; axial diffusivity, AD; radial diffusivity,
RD). No significant group difference was found in FA, AD, or RD. The DTI
results are comparable to previously published studies (Travers et al.,
2012) [53]. Our data suggested increased sensitivity of the DKI metrics to
group differences compared to DTI ones. Figure S2. Scatter plots
showing bivariate relationships between DKI metrics and DigitSC score
for TD and ASD group. Each row represents one DKI metrics while each
column shows results for different segments. Plots where correlations
between diffusion metrics and DigitSC reached p values smaller than 0.05
for the TD group are marked with a thicker black border. We note that
bivariate correlations were relatively weaker compared to multivariable
regression models although they did follow a similar trend. No significant
correlations are noted in the ASD group. Figure S3. Scatter plots
showing bivariate relationships between DKI metrics and DigitSC score
for TD and ASD group, without the two ASD outliers with high DigitSC
scores. Each row represents one DKI metrics while each column shows
results for different segments. Plots where correlations between diffusion
metrics and DigitSC reached p values smaller than 0.05 for the TD group
are marked with a thicker black border. No significant correlations are
noted in the ASD group. (ZIP 1620 kb)
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