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Abstract

Background: Autistic individuals exhibit atypical patterns of sensory processing that are known to be related to
quality of life, but which are also highly heterogeneous. Previous investigations of this heterogeneity have ordinarily
used questionnaires and have rarely investigated sensory processing in typical development (TD) alongside autism
spectrum development (ASD).

Methods: The present study used hierarchical clustering in a large sample to identify subgroups of young autistic
and typically developing children based on the normalized global field power (GFP) of their event-related potentials
(ERPs) to auditory stimuli of four different loudness intensities (50, 60, 70, 80 dB SPL): that is, based on an index of
the relative strengths of their neural responses across these loudness conditions.

Results: Four clusters of participants were defined. Normalized GFP responses to sounds of different intensities
differed strongly across clusters. There was considerable overlap in cluster assignments of autistic and typically
developing participants, but autistic participants were more likely to display a pattern of relatively linear increases in
response strength accompanied by a disproportionately strong response to 70 dB stimuli. Autistic participants
displaying this pattern trended towards obtaining higher scores on assessments of cognitive abilities. There was
also a trend for typically developing participants to disproportionately fall into a cluster characterized by
disproportionately/nonlinearly strong 60 dB responses. Greater auditory distractibility was reported among autistic
participants in a cluster characterized by disproportionately strong responses to the loudest (80 dB) sounds, and
furthermore, relatively strong responses to loud sounds were correlated with auditory distractibility. This appears to
provide evidence of coinciding behavioral and neural sensory atypicalities.
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Limitations: Replication may be needed to verify exploratory results. This analysis does not address variability
related to classical ERP latencies and topographies. The sensory questionnaire employed was not specifically
designed for use in autism. Hearing acuity was not measured. Variability in sensory responses unrelated to loudness
is not addressed, leaving room for additional research.

Conclusions: Taken together, these data demonstrate the broader benefits of using electrophysiology to explore
individual differences. They illuminate different neural response patterns and suggest relationships between sensory
neural responses and sensory behaviors, cognitive abilities, and autism diagnostic status.

Keywords: Autism, Heterogeneity, Hierarchical clustering, Event-related potentials (ERPs), Subgroups, Sensory
processing

Background
Differential sensory processing in autism spectrum de-
velopment (ASD)1 has historically been under-
recognized and under-studied. Sensory processing was
not listed as a clinical symptom of autism until the re-
lease of DSM-5 in 2013 [2]. However, abundant evidence
has emerged to highlight the relevance of differential
sensory processing in ASD (see [3, 4] for reviews). For
example, there is evidence of hyperacusis in autism [5–
8]. The impact of these sensory differences depends
upon autistic people’s environments [9], almost always
designed with typical development (TD) in mind. Thus,
differential sensory processing in ASD is associated with
participation in activities [10, 11], adaptive functioning
[12–15], anxiety and other affective symptoms [16–19],
and even quality of life [20].

Heterogeneity in autistic sensory processing
Sensory processing in ASD is also extremely heteroge-
neous [21]. First-person accounts demonstrate this di-
versity within the auditory domain. One autistic
individual describes hypersensitivity to sudden, uncon-
trollable loud sounds like balloons and alarms (p. 69)
[22]. Another reports struggling to tolerate soft echoing
sounds in large spaces, like the rustling of papers (p. 74)
[23], while yet another complains of how the sustained
noise of crowds in hallways “seemed to make everything
around me ‘echo’” [24]. Thus, different individuals have
different patterns of auditory hyper-sensitivity and sen-
sory interests, as well as unique experiences in response
to different sounds. Furthermore, autistic people report
that their individual sensory experiences can vary based
on the degree to which the perceiver can predict or

control the sensory stimuli, as well as the perceiver’s
levels of anxiety and stress [25, 26]. These illustrations
make clear the need for research which takes the hetero-
geneity of sensory processing in ASD into account.

Caregiver- and self-report questionnaires
In recent years, researchers have started to use
caregiver-report questionnaires to explore this hetero-
geneity, including studies which have clustered data
from caregiver-report measures to identify sensory sub-
types in ASD (for a systematic review, see [27]). How-
ever, two limitations of these studies are that they do
not yield information about the neural processes that
underlie sensory experiences and that caregivers cannot
know directly what their children experience (see also
[22], pp. 80–83). Indeed, although self-reported and
parent-reported auditory hypersensitivities are signifi-
cantly correlated in autistic adolescents without intellec-
tual disabilities [28], the relatively low magnitude of the
correlation coefficient (.49) obtained between parent-
and self-reports on the same measure suggests that there
are substantial differences between reporters.

Neurophysiology
At present, relatively few studies using EEG or magneto-
encephalography to investigate sensory processing in
ASD have investigated heterogeneity. No published
neurophysiological studies have attempted to separate
autistic individuals into subgroups based neural markers
of sensory processing, although some studies have re-
ported associations between neurophysiological re-
sponses and various other variables in ASD [29–34],
including other measurements of sensory processing,
such as questionnaires [35–39].
Of the different ERP paradigms used to study autistic

sensory processing, the presentation of tones of differing
loudness (as used by [40, 41]), may hold particular
promise in the exploration of heterogeneity. This ap-
proach was recently used to explore heterogeneity
through the identification of differences between autistic
participants with and without disproportionate

1Note on terminology: In light of research [1] suggesting that the
majority of autistic-people prefer identity-first language (e.g., “autistic”)
to person-first language (e.g., “person with autism”), the authors of the
present paper have chosen to use identity-first language. Furthermore,
since this study [1] also found that only a minority of autistic people
endorsed the use of the terms “disorder” or “condition” to describe
autism, and out of a desire to avoid unnecessarily embedding value
judgements into research terminology, the authors have decided to use
“autism spectrum development” as an alternative.
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megalencephaly [42]. Reports that some autistic people
experience sensitivities to relatively soft sounds, while
others describe greater sensitivity to louder sounds, sug-
gest that exploring brain responses to stimuli of different
loudness could reveal important information about indi-
vidual differences in sensory processing in ASD.

Heterogeneity in both ASD and typical sensory
processing
It is difficult to fully interpret and contextualize the het-
erogeneity of sensory processing in ASD without also
having some understanding of the heterogeneity of sen-
sory processing in TD—and, in some ways, we know less
about sensory heterogeneity in TD than ASD. Little and
colleagues [43] explored sensory subtypes using parent
reports in both autistic and typically developing partici-
pants and using self-reports; Elwin et al. [44] also char-
acterized sensory subtypes in the general population and
in ASD. These existing studies seem to suggest the exist-
ence of a single relatively “typical” subgroup dominated
by typically developing participants (though including
some autistic individuals), as well as an unclear number
of additional subtypes that include more autistic partici-
pants. However, this literature remains limited.

Present study
The present study is part of the Autism Phenome Pro-
ject (APP) at the UC Davis MIND Institute, a large
interdisciplinary study that aims to define subtypes of
ASD based on behavioral, biochemical, and neurobio-
logical indices. As part of the APP, electrophysiological
responses to auditory stimuli of different intensities were
collected from large numbers of participants at the first
time-point after study entry. The present study aims to
begin exploring neural heterogeneity in autistic and typ-
ical sensory processing by using these responses to de-
fine clusters of children with similar patterns of
intensity-dependent auditory processing. In this study,
the autistic and typically developing groups are com-
bined and clustered in the same analysis so that sensory
responses in each diagnostic group can be situated and
understood in relation to one another. Furthermore,
clusters are statistically compared to determine whether
levels of different measured variables (such as cognitive
ability and caregiver-reported sensory behavior) differ
across clusters.
While the present study is exploratory, we made sev-

eral predictions. First, as the clustering technique expli-
citly aims to group participants based on relative
electrophysiological responses to stimuli of differing in-
tensity, we expect that clusters will differ in their profiles
of responses to stimuli of differing intensity. Second,
owing to the existence of autistic individuals with sen-
sory processing scores in the TD range in prior work

(e.g., [43]), we anticipate that there will be substantial
overlap between autistic and typically developing partici-
pants in the clusters defined in the analysis. Third, des-
pite the substantial overlap predicted by the second
hypothesis, we expect that there will be some separation
of autistic and typically developing participants across
clusters. Although research suggests that inter-individual
variability in intensity-dependent cortical electrophysio-
logical responses is considerable even in TD (e.g., [45,
46]), averaged response patterns in TD show monotonic
increases of neural response strength with stimulus in-
tensity [47]. In line with the patterns of subgroups found
in questionnaire-based investigations of sensory hetero-
geneity in ASD and TD [43, 44], it would seem reason-
able to anticipate that autistic participants might be
more likely to display responses diverging from this
monotopic grand-average pattern: that is, autistic partici-
pants might fall in clusters with unexpectedly strong re-
sponses to weak stimuli or displaying unexpectedly large
increases in response strength to loud stimuli. This
would also be consistent with some autistic people’s de-
scriptions of particular subjective sensitivity towards the
sounds of different loudness. Fourth, we expect that par-
ents of participants in clusters with unexpectedly strong
or weak responses to stimuli of particular intensities will
report more atypical auditory sensory behaviors. Con-
versely, we predict that participants in clusters charac-
terized by a relationship between stimulus and neural
response strength similar to the overall grand-average
will be rated as showing more typical sensory behaviors.
A considerable number of measures were collected as

part of the APP. Given that anxiety [16–19], adaptive
functioning [12–15], and cognitive ability [48, 49] have
all been associated with autistic sensory processing in
previous studies, and in light of the extensive literature
documenting relationships between chronological age
and electrophysiological responses in TD, these variables
were also explored in this study.

Methods
Participants
As part of the APP, attempts were made to collect elec-
trophysiological data from a total of 243 autistic and 96
typically developing children. All autistic participants
met DSM-IV/Collaborative Programs for Excellence in
Autism criteria for a Pervasive Developmental Disorder
and passed cut-off scores on the ADOS-G [50] and, for
either Social or Communication subscales, on the ADI-R
[51]. Further details regarding the APP and participant
recruitment can be found in previous publications (e.g.,
[52, 53]). Some participants were excluded from the
present study due to noisy data, an insufficient number
of acceptable-quality trials (< 400), an excessive number
of excluded or poor-quality channels (> 6–7), or the
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presence of neuroanatomical abnormalities revealed by
magnetic resonance imaging collected in the APP. One
participant entered the study in the typically developing
group but was diagnosed with autism at a later APP
time-point; this participant’s data are also excluded. The
final sample of children with usable electrophysiological
data included a total of 81 typically developing partici-
pants (52 male) and 132 autistic participants (111 male)
(Table 1). Families received a gift card in return for their
participation in the study.

Measures
Mullen Scales of Early Learning
Cognitive and communication assessments, as well as a
number of caregiver-report questionnaires, were col-
lected from participants as part of the APP. These mea-
sures included the Mullen Scales of Early Learning
(MSEL) [54], a standardized measure of cognitive and
motor functioning for children under the age of 68
months. Four MSEL subscales were administered: visual
reception, fine motor, expressive language, and receptive
language. A ratio developmental quotient (DQ) was cal-
culated (as (mental age/chronological age)×100) for full-
scale performance, as well as for verbal (VDQ) and non-
verbal (NVDQ) performance. MSEL data were available
from all 132 autistic participants with usable electro-
physiological data, and for 80 of the 81 typically develop-
ing participants.

Vineland Adaptive Behavior Scales
These measures also included the parent-report form of
the Vineland Adaptive Behavior Scales, Second Edition
(VABS-II) [55], a rating scale designed for the assess-
ment of adaptive functioning in populations with devel-
opmental disabilities. A standardized composite adaptive
behavior score can be calculated. Complete VABS data
were available from 117 ASD (96 male) and 69 TD par-
ticipants (43 male).

Short Sensory Profile
The Short Sensory Profile (SSP) [56] was also collected.
The SSP is a 38-item caregiver-report questionnaire that
has been used in a number of studies to investigate and
characterize autistic sensory processing (e.g., [18, 19, 48,

57, 58]). Higher scores reflect relatively typical sensory
behaviors, whereas lower scores are indicative of atypi-
cality. Complete SSP data were available from 99 of the
132 autistic participants, while partial data were available
from 108 autistic participants (90 male). Complete SSP
data were only available from 65 of the 81 typically de-
veloping participants, while some SSP subscales were
available from a total of 66 (43 male). In addition to the
original seven SSP subscales developed based on a
typically-developing sample [56], two studies have ex-
plored SSP factors in samples of autistic children [59,
60]. In the present study, SSP items related to auditory
sensory processing were of particular interest. Therefore,
the nine-factor solution developed by Williams et al.
[60], which specifically distinguishes behaviors reflecting
auditory sensory sensitivity from those reflecting visual
sensitivity, was selected. Given their relevance to the
auditory domain, Williams et al.’s subscales for noise
distress, auditory distractibility, and hyporesponsiveness
to speech were examined in this study, along with the
total score on all 38 SSP items.

Childhood Behavior Checklist
The preschool-age form of the Childhood Behavior
Checklist (CBCL) was also collected [61]. This 100-item
caregiver-report questionnaire aims to assess problem-
atic internalizing and externalizing behaviors in young
children. Of particular interest in the present study is
the DSM-oriented anxiety problems subscale, given the
previous reports of relationships between autistic sen-
sory processing and anxiety. This subscale yields both a
raw score and a normed T-score. CBCL DSM-oriented
anxiety T-scores were available from 126 autistic (106
male) and 75 typically-developing (48 male) participants.

Electroencephalography (EEG) task
The experimental setup and data collection have been
previously described in [42]. Briefly, while seated on a
caregiver’s lap in a dimly lit room, participants passively
listened to 50ms (including 5ms rise and decay time)
complex tones (sine waves of equal amplitude overlaid
at the following 7 frequencies (musical notes): 249 Hz
(B3); 616 Hz (D5), 788 Hz (G5), 1042 Hz (C6), 1410 Hz
(F6), 1952 Hz (B6), and 2749 Hz (F7)) randomly

Table 1 Characteristics of typically developing and autistic participants with usable electrophysiological data

TD ASD

Mean (SD) Range Mean (SD) Range

Chronological age (months) 37.09 (6.46) 25.80–56.33 38.54 (6.02) 25.50–54.87

MSEL Developmental Quotient (DQ) 106.36 (11.57) 79.89–128.62 64.83 (20.49) 30.39–132.45

MSEL Verbal DQ (VDQ) 107.97 (12.70) 81.26–149.47 58.40 (25.55) 19.31–127.98

MSEL Non-Verbal DQ (NVDQ) 104.75 (13.86) 71.49–129.96 71.26 (18.41) 36.39–136.93

VABS Adaptive Behaviour Composite 111.22 (12.00) 82.00–135.00 75.35 (11.00) 53.00–104.00
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presented at different intensities (50 dB, 60 dB, 70 dB,
and 80 dB SPL) with a 1–2 s random ISI. The tones were
presented via Sony MDR-222KD child-size headphones
calibrated with a B&K artificial ear (model 4153) and
sound meter (model 2229). Approximately ~1100–1200
trials were collected from each participant. Throughout
the EEG recording, children watched a quiet video of
their or their caregiver’s choice. Breaks were included as
required, including briefly pausing the delivery of stimuli
to suit child comfort.

EEG data acquisition and processing
EEG data were collected with a 61-channel EASYCAP
system [62] using a Compumedics Neuroscan Synamp II
amplifier. Data were sampled at a rate of 1000 Hz with
Cz as a reference. Data were then average-referenced
and band-pass filtered with a low cutoff of 0.4 Hz offline
(12 dB/octave roll-off). Epochs (spanning −200 ms to
900 ms, including 300ms necessary for subsequent
lagged correlations within an independent component
analysis step) were screened and extreme amplitudes re-
moved using the artifact scan tool of BESA 5.2 [63]. On
average, in the ASD group, 23% of trials were removed
in this process, compared to 19% in the TD group (see
also Table 2). Given the study’s goal of exploring hetero-
geneity and individual differences in electrophysiological
data, we sought to maximize the ERP signal-to-noise ra-
tio by removing putatively non-neural signal sources
from the data. To accomplish this, the remaining epochs
were submitted to Second-Order Blind source Identifica-
tion (SOBI; see [64, 65]). We used a semi-automatic
artifact removal tool (SMART, [66]) to identify signal
sources from SOBI that were interpreted, on the basis of
signal source topography, spectra, autocorrelation and
time series, to be of non-neural origin (such as electro-
myography/EMG, electrooculography/EOG, and blinks).
Additional details regarding artifact removal using SOBI
and SMART are discussed in [67]. Artifact-free trials
were then reconstructed from the putatively neural SOBI
signal sources and separate averages for each of the four
loudness conditions were computed for each subject.
Data from excluded channels were then interpolated
using a 3-dimensional spline [68]. Epochs (now spanning
100 ms pre-stimulus onset to 600 ms post-stimulus on-
set) were filtered (second-order Butterworth with −12
dB/octave roll/off; 0.1 Hz high-pass; 40 Hz low-pass; 60

Hz notch) and baseline-corrected using the pre-stimulus
period with the Cartool software [69].
The global field power (GFP) was used as an index of

the strength of the brain’s response for analysis of the
electrophysiological data. The GFP is computed as the
standard deviation of all electrode channels per sample,
and because the overall spatial distribution and gradients
of the electrical potential across the montage are inde-
pendent of the reference electrode, the GFP is reference-
independent. Thus, GFP can be regarded as an index of
the strength of the brain’s response to the stimulus, with
higher GFP values reflecting a stronger neural response
overall, independent of the spatial distribution of the
electrocortical response [70]. We deemed this study’s
focus on GFP appropriate because it allows for an en-
tirely data-driven analysis, based on an index of the total
strength of the neural response, that is not dependent
upon the a priori selection of ERP components and elec-
trode sites of interest. This may be of particular value in
samples with young and neurodivergent children, some
of whom may have unusual or idiosyncratic neural
responses.
To ensure that the clustering and correlation analyses

focused explicitly on differences between loudness con-
ditions (i.e., loudness-dependency) while ignoring the
between participant absolute strength of the electro-
physiological response across conditions, GFP for each
participant in each condition was normalized. In the
normalization process, each participant’s GFP value at
each time-point in each condition was divided by that
participant’s average GFP across all four conditions at
the same time-point (see Fig. 1). Thus, the normalized
GFP represents the strength of the neural response in a
particular condition relative to the other conditions. It should
be noted that this process should dramatically reduce the
influence of non-neural factors that could contribute to indi-
vidual differences in electrophysiological responses, such as
the thickness of a participant’s skull [71].

Hierarchical clustering analysis
The time windows used in the clustering analysis were
defined by the criterion of ± 85% peak latency of the
grand average of the raw GFP across groups. That is, in
every loudness condition, separately, these were the time
windows spanning the two time-points on either side of
the raw GFP peak where raw GFP values were equal to
85% of the peak raw GFP. These windows, therefore,
bracket the period of the strongest neural response.
These windows corresponded to 101–152 ms for 50 dB;
90–141 ms for 60 dB; 79–133 ms for 70 dB; and 79–120
ms for 80 dB. Prior literature and visual inspection sug-
gest that these periods correspond to the auditory P1, a
large cortical auditory event-related response observed
around ~100–150 ms in young children [72–74].

Table 2 Means and standard deviations of number of trials
retained in final averages. Means appear first, followed by
standard deviations in brackets

50 dB 60 dB 70 dB 80 dB

ASD 220.43 (50.50) 211.54 (52.00) 224.76 (49.93) 216.32 (49.97)

TD 240.07 (53.51) 229.49 (54.05) 244.00 (54.35) 234.63 (53.07)
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Next, the normalized GFP in the windows defined
by 85% fractional peak latency was entered into a
hierarchical clustering analysis. In this analysis, the
normalized GFP values of each participant from each
time-point in each loudness condition were clustered
in R according to Ward’s agglomerative hierarchical
method and visualized using heatmaps. Ward’s
method aims to identify clusters based on distance in
multivariate Euclidean space, by minimizing the vari-
ance within each cluster. That is, in Ward’s method,
pairs of clusters are selected for merging based on
the criterion that their merger should make the smal-
lest possible increase in within-cluster variability. Ini-
tially, each cluster is a single participant, but clusters
are then merged until all participants are grouped to-
gether. This generates a dendrogram which reflects
the hierarchy of the clusters; participants appearing
together in the lower branches are relatively less dis-
tant from (or more similar to) each other, in terms of
the pattern of differences between loudness condi-
tions, than participants that are widely separated in
the dendrogram. Similar to K-means, Ward’s method
utilizes object function- minimization of the within-
cluster sum of squared error. However, Ward’s ap-
pears to be slightly more accurate than K-means in
finding the number of clusters in datasets and unco-
vering relations among the clusters [75, 76]. Further-
more, in relation to the alternative hierarchical
approach of single-linkage clustering, Ward’s method
appears less susceptible to noise and less likely to
produce elongated clusters [76, 77], although
complete-linkage clustering has been shown to yield
results more similar to Ward’s method [75].

While clustering solutions are often selected on the
basis of an optimization algorithm, Fushing and McAs-
sey [78] demonstrate that the question of exactly how
many clusters exist in a dataset is ill-posed. At least
within (multi-)dimensional data clouds (rather than
more naturally categorical data clouds with convex, well-
separated clusters), different clusters can be said to exist
at different hierarchical levels; it is hard to see how any
single level necessarily yields the only valid, optimal so-
lution. When clustering is used as a technique for ex-
ploring and describing dimensional data (as the authors
believe loudness-dependent auditory responses should
be regarded), a better question might be the question of
what hierarchical level allows for the clearest description
of the present dataset for the purposes of the present
study. As such, the level of the dendrogram used for the
determination of final cluster groups was manually se-
lected based on the hierarchies formed in this analysis.
A level of yielding four clusters was chosen (see Fig. 2).
To further validate our clusters and offer at least a pre-
liminary examination of their replicability albeit within
the limits of the present dataset, subsamples of partici-
pants were repeatedly drawn and probabilities of re-
assignment alongside other participants from each
original cluster were calculated (see Supplementary
Methods and Results, Figures S1–S2).

Statistical comparisons of clusters.
A chi-square test of homogeneity was used to determine
whether autistic participants were statistically more
likely to fall into different clusters than typically develop-
ing participants, as well as vice versa. Omnibus effects
were probed using adjusted standardized residuals

Fig. 1 a Raw GFP from 0 to 200ms post-stimulus onset averaged, separately in each loudness condition, across all participants in both diagnostic
groups. The overlapping colored rectangles represent the different 85% fractional peak latency time windows from each of the loudness
conditions. b Normalized GFP averaged across all participants in each loudness condition
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(ASRs), which were obtained from each cell of the chi-
square table and corrected for multiple comparisons
using the Bonferroni-Holm procedure. With two diag-
nostic groups, comparisons in any row of the chi-square
table perfectly mirrored one another, so the number of
possible comparisons equaled the number of clusters.
To statistically compare the normalized GFP patterns

found in different clusters, a parametric mixed ANOVA
with loudness and cluster as factors was fitted. Interaction
effects were explored further with follow-up one-way
parametric ANOVAs separately in the 50 dB, 60 dB, 70
dB, and 80 dB conditions; results were corrected for mul-
tiple comparisons using the Bonferroni-Holm procedure.
Afterwards, Welch’s t-tests, with a Bonferroni-Holm cor-
rection, were used to probe significant one-way ANOVA
results. All results that reached significance prior to cor-
rection for multiple comparisons are reported with their
corrected p values, but results that did not attain statistical
significance before or after correction for multiple com-
parisons are not reported. Generalized eta-squared (η2G )
and Cohen’s d were used to estimate effect size.
Finally, to compare clusters and diagnostic groups on

measured variables such as DQ and SSP scores, two-way
between-groups ANOVA was used, unless assumptions
of this parametric test were violated. If assumptions were

violated, one-way Kruskal-Wallis tests were used, with
no multiple comparison correction, to compare clusters
separately in each diagnostic group. Wilcoxon-Mann-
Whitney tests with Bonferroni-Holm corrections were
used to determine the significance of post-hoc compari-
sons, which are reported using the effect size δ [79].

Contiguity-based permutation correlation analyses
Due to the limitations of analyses involving comparison
of levels of continuous variables across categorical sub-
groups defined on the basis of other continuous vari-
ables (see [80]), continuous associations were examined
between normalized GFP and those variables which sig-
nificantly differed across clusters in each diagnostic
group, namely (as discussed below in the results): SSP
total scores, SSP auditory distractibility scores, MSEL
DQ, and MSEL NVDQ in ASD, as well as MSEL VDQ
in TD. In each loudness condition, and at each time-
point between 79 ms and 152 ms—that is, each time
point falling into one of the windows used for the clus-
tering analyses—Spearman’s rank-based correlation co-
efficient was used to examine the association between
normalized GFP values and these variables. No mul-
tiple comparison correction was used to control for
the number of different variables examined, so these

Fig. 2 The hierarchical clustering analysis using Ward’s method. Each row is a participant, with autistic participants being marked as gold in the
small column on the left, while typically developing participants are blue. The four main columns show normalized GFP in each loudness
condition. Each column also depicts changes in normalized GFP over time, with earlier time-points being on the left of each column and later
time-points on the right of each column. As shown in the scale in the upper left corner, smaller values, (reflecting a weaker normalized GFP in
the loudness condition) are redder, while larger values (reflecting a stronger GFP) are yellower. A histogram showing the distribution of individual
data points (individual data points represent a participant’s normalized GFP value in a given condition and at a given time-point) is superimposed
over the scale. The dendrogram on the far left shows hierarchical clusters of similar participants. The horizontal lengths of the dendrogram
branches represent the distance between clusters. The clusters selected for the purposes of this analysis are separated by blank space, and group
numbering proceeds from top to bottom (i.e., C1 is at the top, C4 is at the bottom)
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tests are clearly exploratory. However, a contiguity-
based permutation testing approach2 [81] was used to
correct for the multiple comparisons entailed by sep-
arately examining effects at numerous consecutive
time-points. First, all test statistics exceeding an initial
two-tailed probability threshold of .05 were grouped
into different temporally contiguous series of time
points. Obtained statistics from these contiguous
series were summed. To determine final statistical sig-
nificance, summed statistics from the obtained con-
tiguous series were compared against the null
distribution of summed contiguous series statistics
generated through 10,000 random permutations of the
data. Essentially, this procedure discards any associa-
tions that are not stronger and/or more temporally
sustained than would be expected from chance alone.

Results
Hierarchical clustering analysis
Grand-averaged raw and normalized GFP across both
groups are depicted in Fig. 1, visual inspection of which
shows that intensity systematically modulated neural re-
sponses, as well as supplementary Figures S3–S6, while
the results of the hierarchical clustering analysis are dis-
played in Fig. 2. Groups are referred to as “C1” (referring
to “Cluster 1”) through “C4”. Generally, analyses of clus-
ter replicability (albeit within the present dataset) based
on drawing and clustering repeated subsamples suggest
the present clusters are fairly replicable, with partici-
pants being substantially more likely to be clustered
alongside other participants from their original clusters
than alongside those outside their original clusters (Sup-
plementary Tables S2–S3), although it should be noted
that one subgroup of participants within C1 showed
some propensity to move back and forth between C1
and C2 on resampling (Supplementary Figures S1–S2).

Diagnostic group membership
The distributions of autistic and typically-developing
participants across the clusters differed significantly, X2

(3, N = 213) = 8.42, p = .04 (Table 3). C1 had signifi-
cantly more autistic participants than expected based on

the proportion of ASD participants in the study, ASR =
2.70, corrected p = .03. Furthermore, at a trend level, C3
had more typically developing participants than ex-
pected, ASR = 2.18, corrected p = .06.

Cluster electrophysiological patterns
There was a significant between-subjects main effect of
the cluster on normalized GFP, F(3, 209) = 3.86, p = .01,
η2G = .003, there was a significant within-subjects effect
of loudness, F(3, 627) = 78.23, p < .0001, η2G = .26, and
there was a significant cluster by loudness interaction,
F(9, 627) = 55.09, p < .0001, η2G = .43 (Figs. 3 and 4).
This robust interaction confirmed that the hierarchical
clustering analysis succeeded in defining clusters that
differed in the loudness-dependency of their electro-
physiological responses to auditory stimuli.
In the 50 dB condition, normalized GFP significantly

differed across the clusters, F(3, 209) = 49.09, corrected
p < .0001, η2G = .41. The brain’s electrophysiological re-
sponse to 50 dB sounds was significantly stronger in C4
than in any other cluster group (compared to C1,
Welch’s t(96.90) = 13.91, corrected p < .0001, d = 2.55;
compared to C2, Welch’s t(63.42) = −11.36, corrected p
< .0001, d = 2.50; and compared to C3, Welch’s t(98.99)
= 10.58, corrected p < .0001, d = 1.93). There was also a
trend for a stronger 50 dB response in C3 compared to
C2, but this was not significant after applying the Holm-

Table 3 Counts and percentages of autistic and typically-
developing participants, separately, in cluster groups

C1 C2 C3 C4

ASD 53 (74.65%) 24 (58.54%) 32 (50.79%) 23 (60.53%)

TD 18 (25.35%) 17 (41.46%) 31 (49.21%) 15 (39.47%)

Fig. 3 Normalized GFP averaged across clustering time windows in
each loudness condition and cluster collapsed across both
diagnostic groups. C1 contains 53 autistic and 18 typically
developing participants, C2 contains 24 autistic and 17 typically
developing participants, C3 contains 32 autistic and 31 typically
developing participants, and C4 contains 23 autistic and 15 typically
developing participants. Hinges (outer limits of boxes) correspond to
first and third quartiles (25th and 75th percentiles) and whiskers
extend either 1.5× the interquartile range outwards from the boxes,
or the range of the data, whichever is smaller.

2This statistical test is often referred to as a “cluster-based permutation
test.” However, we have chosen to use the term “contiguity-based” to
avoid confusion with the hierarchical clustering analysis also employed
in this paper.
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Bonferroni correction, Welch’s t(81.40) = 2.45, corrected
p = .11, d = 0.50.
In the 60 dB condition, normalized GFP significantly dif-

fered across the clusters, F(3, 209) = 85.54, corrected p <
.0001, η2G = .55. The brain’s electrophysiological response to
60 dB sounds was significantly stronger in C3 than any
other group (compared to C1, Welch’s t(131.85) = 10.04,
corrected p < .0001, d = 1.72; compared to C2, Welch’s
t(76.02) = 14.30, corrected p < .0001, d = 2.97; and com-
pared to C4, Welch’s t(83.34) = 12.91, corrected p < .0001,
d = 2.60). Furthermore, the brain’s response to 60 dB
sounds was stronger in C1 than C2, Welch’s t(83.44) =
5.64, corrected p < .0001, d = 1.11, and it was stronger in
C1 than C4, Welch’s t(92.12) = 3.15, corrected p = .02, d =
0.59. A trend for the 60 dB response to be stronger in C4
than C2 did not survive post-hoc correction, Welch’s
t(75.05) = 2.77, corrected p = .06, d = 0.62.

In the 70 dB condition, normalized GFP significantly dif-
fered across the clusters, F(3, 209) = 45.57, corrected p <
.0001, η2G = .40. The brain’s electrophysiological response
to 70 dB sounds was significantly stronger in C1 than any
other group (compared to C2, Welch’s t(88.25) = 5.48,
corrected p < .0001, d = 1.06; compared to C3, Welch’s
t(124.08) = 11.90, corrected p < .0001, d = 2.01; and com-
pared to C4, Welch’s t(82.60) = 6.62, corrected p < .0001,
d = 1.29). Furthermore, the brain’s response to 70 dB
sounds was significantly weaker in C3 than in C2, Welch’s
t(67.23) = –4.20, corrected p = .0009, d = −0.90, and the
70 dB response was significantly weaker in C3 than C4,
Welch’s t(62.34) = −2.91, corrected p = .05, d = −0.64.
In the 80 dB condition, normalized GFP significantly

differed across the clusters, F(3, 209) = 42.00, corrected
p < .0001, η2G = .38. The brain’s electrophysiological re-
sponse to 80 dB sounds was significantly stronger in C2

Fig. 4 a–d Normalized GFP averaged, separately in each loudness condition and diagnostic group, across participants each group and cluster.
The overlapping colored rectangles represent the different 85% fractional peak latency time windows from each of the different loudness
conditions. Note that while normalized GFP patterns do differ across clusters, ASD and TD participants within each cluster appear similar. a
Normalized GFP averaged, separately in each loudness condition and diagnostic group, across participants from C1. b Normalized GFP averaged
across participants in each diagnostic group from C2. c Normalized GFP averaged across participants in each diagnostic group from C3. d
Normalized GFP averaged across participants in each diagnostic group from C4

Dwyer et al. Molecular Autism           (2020) 11:48 Page 9 of 17



than any other group (compared to C1, Welch’s t(76.23)
= 9.74, corrected p < .0001, d = 1.97; compared to C3,
Welch’s t(87.61) = 9.13, corrected p < .0001, d = 1.82;
and compared to C4, Welch’s t(74.44) = 9.13, corrected
p < .0001, d = 2.06). These effects were robust to the re-
moval of the three outlying participants in C2 (based on
the criterion of 3× the median absolute deviation) visible
in Fig. 3.

Measures and demographics
Caregiver-reported sensory symptoms
Total scores on the SSP showed a non-normal distribu-
tion, Shapiro-Wilk W = .96, p = .0003, as did scores on
the three SSP auditory factors defined by Williams et al.
[60], Shapiro-Wilk p ≤ .0001. Furthermore, combining
across clusters, autistic participants had significantly lower
(i.e., more atypical) SSP total scores than typically develop-
ing participants, Wilcoxon-Mann-Whitney W = 746.5,
nASD = 99, nTD = 65, p < .0001, δ = −.88, and the same
pattern was observed with all three auditory subscores, p
≤ .008. Therefore, one-way non-parametric Kruskal-
Wallis tests were used to compare clusters on SSP scores
and subscores separately in each diagnostic group. Among
autistic participants, total SSP scores differed between
clusters, H(3) = 8.67, p = .03 (Table 4, Fig. 5a). Wilcoxon-
Mann-Whitney tests indicated that sensory processing
trended towards being more atypical in C2 than C3, W =
108.5, nC2 = 18, nC3 = 23, corrected p = .06, δ = −.48. Fur-
thermore, among autistic participants, scores on the SSP
Auditory Distractibility factor significantly differed be-
tween clusters, H(3) = 10.31, p = .02 (Fig. 5b). Wilcoxon-
Mann-Whitney tests indicated that more auditory dis-
tractibility was reported in C2 than C4, W = 90.5, nC2 =
19, nC4 = 19, Bonferroni-Holm corrected p = .05, δ = −.50;
there was also a trend for more auditory distractibility in
C2 than C3, W = 139.5, nC2 = 19, nC3 = 26, corrected p =
.07, δ = −.44. Trends in the ASD sample for effects of the
cluster on Noise Distress did not attain significance. In the
typically developing sample, one-way Kruskal-Wallis tests
revealed no significant differences between clusters on the
SSP total score or any of the auditory subscores (Supple-
mentary Table S1).

Chronological age
There was no main effect of cluster group, F(3, 204) =
1.02, p = .38, η2G = .01, or diagnostic group, F(1, 204) =
2.19, p = .14, η2G = .01 on chronological age, nor was
there an interaction of cluster and diagnostic groups,
F(3, 204) = 0.90, p = .44, η2G = .01.

Cognitive ability
MSEL DQ had a non-normal distribution in ASD,
Shapiro-Wilk W = .96, p = .0008. Furthermore, autistic
participants had significantly lower DQ than typically de-
veloping participants (Table 1). Therefore, one-way non-
parametric Kruskal-Wallis tests were used to compare
clusters on DQ, VDQ, and NVDQ scores separately in
each diagnostic group. Among autistic participants, DQ
scores differed between clusters, H(3) = 8.28, p = .04
(Table 5, Fig. 5c). Similar effects were found in NVDQ
scores, and a similar trend was seen in VDQ scores, al-
though in each case post-hoc comparisons failed to locate
significant differences after strict corrections for multiple
comparisons were applied. Among typically developing
participants, VDQ scores significantly differed between
clusters (Table 6, Fig. 5d), H(3) = 9.08, p = .03; after cor-
rection, scores in C2 were lower than C4, W = 56.0, nC2 =
17, nC3 = 15, corrected p = .04, δ = –.56. No effects of
full-scale DQ and NVDQ were observed in TD.

Adaptive behavior
Although the overall distribution of VABS composite
scores was non-normal, distributions did not violate
Shapiro-Wilk tests in each group separately (p ≥ .07).
Therefore, one-way ANOVAs were used to compare clus-
ters on VABS composite scores separately in each diag-
nostic group. VABS scores did not differ between clusters
in the ASD sample, F(3, 113) = 2.04, p = .11. Among typic-
ally developing participants, the VABS composite did not
differ between clusters, F(3, 65) = 1.48, p = .23.

Anxiety
CBCL DSM-oriented anxiety T-scores had a non-normal
distribution, Shapiro-Wilk W = .63, p < .0001. Further-
more, autistic participants had significantly higher

Table 4 SSP total scores and auditory subscores for autistic participants by cluster

Cluster means (standard deviations) Kruskal-Wallis
test

Cliff’s δ1

C1 C2 C3 C4 H(3) p C1, C2 C1, C3 C1, C4 C2, C3 C2, C4 C3, C4

Auditory Distractibility 11.15 (2.56) 10.21 (2.70) 12.19 (1.92) 12.47 (2.37) 10.31 .02 .21 −.23 −.31 −.44 −.50* −.13

Hyporesponsiveness
to Speech

4.81 (1.52) 4.38 (2.11) 4.65 (1.38) 5.21 (1.65) 3.89 .27 .22 .05 −.10 −.19 −.35 −.15

Noise Distress 7.19 (2.33) 6.24 (2.61) 8.08 (1.79) 7.68 (1.92) 7.21 .07 .22 −.21 −.10 −.43 −.34 .13

Total SSP Score 135.08 (20.08) 128.50 (24.51) 145.43 (16.69) 141.42 (18.75) 8.67 .03 .19 −.30 −.21 −.48 −.37 .15
1Values of δ are indicated with * if corresponding the Wilcoxon-Mann-Whitney p value is < .05 after Bonferroni-Holm correction for six comparisons
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anxiety levels than typically developing participants,
Wilcoxon-Mann-Whitney W = 6043.5, nASD = 126, nTD
= 75, p = .0003, δ = .28. Therefore, one-way non-
parametric Kruskal-Wallis tests were used to compare
clusters on anxiety scores separately in each diagnostic
group. Anxiety levels did not differ between clusters
among autistic participants, H(3) = 0.25, p = .97, or typ-
ically developing participants, H(3) = 0.97, p = .81.

Cluster-based permutation correlation analyses
Caregiver-reported sensory symptoms
In ASD, there was a significant negative Spearman correl-
ation between SSP total scores and normalized GFP to 70

dB sounds in a contiguous series of time points spanning
between 97 and 131ms, p = .009: that is, autistic partici-
pants with strong responses to 70 dB sounds in this ap-
proximate time period had, overall, more atypical caregiver-
reported sensory processing features (Fig. 6a). There were
no significant associations between SSP total scores and
normalized GFP in any other loudness condition in ASD.
In ASD, there was a significant positive correlation

between SSP auditory distractibility scores and nor-
malized GFP to 50 dB sounds in a contiguous series
of points spanning between 87 and 128 ms, p = .01
(Fig. 6b). There was no significant association between
SSP auditory distractibility scores and normalized GFP to

Fig. 5 a–d a Total SSP scores in autistic participants from each cluster. Counting only those with complete SSP data, C1 contains 39 autistic
participants, C2 contains 18 autistic participants, C3 contains 23 autistic participants, and C4 contains 19 autistic participants. Outer limits (hinges)
of boxes correspond to first and third quartiles (25th and 75th percentiles) and whiskers extend either 1.5× the interquartile range outwards from
the boxes, or the range of the data, whichever is smaller. b SSP Auditory Distractibility scores in autistic participants from each cluster. Counting
only those with complete SSP Auditory Distractibility data, C1 contains 41 autistic participants, C2 contains 19 autistic participants, C3 contains 26
autistic participants, and C4 contains 19 autistic participants. c MSEL DQ in autistic participants from each cluster. d MSEL VDQ in typically
developing participants from each cluster

Table 5 MSEL DQ, NVDQ, and VDQ scores by for autistic participants by cluster

Cluster means (Standard deviations) Kruskal-Wallis test Cliff’s δ1

C1 C2 C3 C4 H(3) p C1, C2 C1, C3 C1, C4 C2, C3 C2, C4 C3, C4

MSEL DQ 71.89 (23.96) 56.73 (14.31) 60.88 (16.92) 62.54 (17.50) 8.28 .04 .37 .25 .22 −.11 −.19 −.05

MSEL NVDQ 77.38 (21.21) 64.83 (12.81) 68.16 (17.16) 68.19 (14.43) 9.00 .03 .36 .28 .27 −.10 −.11 −.11

MSEL VDQ 66.40 (29.09) 48.63 (18.92) 53.59 (22.05) 56.87 (23.11) 7.64 .05 .35 .25 .19 −.13 −.19 −.08
1Values of δ are indicated with * if corresponding the Wilcoxon-Mann-Whitney p value is < .05 after Bonferroni-Holm correction for six comparisons
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60 dB sounds in ASD. However, there was a significant
negative association between SSP auditory distractibility
scores and normalized GFP to 70 dB sounds between 101
and 132ms, p = .02. Furthermore, in ASD, there was a sig-
nificant negative association between SSP auditory dis-
tractibility scores and normalized GFP to 80 dB sounds
between 79 and 114ms, p = .02. In other words, autistic
participants with relatively weak responses to soft 50 dB
sounds and relatively strong responses to louder 70 dB
and 80 dB sounds were reported by caregivers to have
more auditory distractibility problems.

Cognitive ability
In ASD, there were no significant associations between
normalized GFP and MSEL DQ or MSEL NVDQ in any
loudness condition or diagnostic group. Furthermore, in
TD, there were no significant associations between nor-
malized GFP and MSEL VDQ in any loudness condition
or diagnostic group.

Discussion
Clustering and individual differences research with ERPs
This study demonstrates that it is possible to use the
hierarchical clustering of electrophysiological data to

group autistic and typically developing participants into
clusters based on the loudness-dependency of their brain
responses to auditory tones. As predicted by the first hy-
pothesis, with normalized GFP as a dependent variable,
there were robust differences in the pattern of loudness
dependency between clusters. Visual inspection of the
averaged normalized GFP across clusters (Fig. 3) as well
as the waveforms in each cluster (Fig. 4) clearly reveals
large, inter-cluster differences in the magnitude of the
brain’s electrophysiological responses to stimuli of differ-
ing loudness. Thus, the clustering method was able to
identify what we take to be meaningful differences in
loudness-dependent response profiles. Indeed, it is im-
portant to note, as discussed further below, that the
clusters defined on the basis of ERP responses differed
from one another in other variables as well: notably,
diagnostic group, performance on cognitive measures, and
caregiver-reported sensory symptoms, which emphasizes
the meaningfulness of the clusters. Interestingly, however,
the clusters did not differ in the chronological ages of their
participants, which suggests that developmental changes
in auditory evoked responses do not affect the loudness-
dependency of overall response strength in the time
window of the present study.

Table 6 MSEL DQ, NVDQ, and VDQ scores by for typically developing participants by cluster

Cluster means (Standard deviations) Kruskal-Wallis test Cliff’s δ1

C1 C2 C3 C4 H(3) p C1, C2 C1, C3 C1, C4 C2, C3 C2, C4 C3, C4

MSEL DQ 106.41 (11.80) 100.30 (11.75) 108.63 (10.75) 108.63 (11.33) 5.62 .13 .24 −.13 −.13 −.39 −.41 −.01

MSEL NVDQ 101.73 (13.13) 100.22 (13.29) 107.65 (13.08) 107.71 (15.99) 4.72 .19 .08 −.23 −.25 −.33 −.30 −.03

MSEL VDQ 111.09 (15.53) 100.38 (12.55) 109.62 (11.31) 109.55 (9.05) 9.08 .03 .45 .02 −.01 −.45 −.56* −.02
1Values of δ are indicated with * if corresponding the Wilcoxon-Mann-Whitney p value is < .05 after Bonferroni-Holm correction for six comparisons

Fig. 6 a, b Spearman’s correlation coefficients between normalized GFP in each condition, separately at each consecutive time-point, and other
measured variables. Time windows with positive correlation effects in any loudness condition are highlighted above the zero-line, while time
windows with negative correlation effects in any loudness condition are highlighted below the zero-line. Values at any given time point
represent the Spearman’s correlation coefficient value at that time point. a Spearman’s correlation between normalized GFP and SSP total scores
in ASD. b Spearman’s correlation between normalized GFP and SSP auditory distractibility in ASD
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Indeed, it is not clear at this point what neural mech-
anism might be responsible for these individual differ-
ences in loudness-dependent neural responses. It has
been suggested that individual differences in intensity-
dependent N1/P2 auditory responses in adults reflect
variation in serotonergic neurotransmission [82]. How-
ever, even in adults, empirical evidence regarding this
hypothesis is mixed, as is evidence regarding associations
between loudness-dependent auditory responses and
dopamine [83]. Given the excitation-inhibition balance
hypothesis of autism [84, 85], we are intrigued by the
possibility that loudness-dependent responses might re-
late to neural excitation and inhibition.

Overlap between diagnostic groups
As predicted by the second hypothesis, there was consid-
erable overlap between the diagnostic groups in the clus-
ters defined in the present analysis. Although the
proportions of autistic and typically developing partici-
pants did differ significantly across clusters, these differ-
ences were modest. All clusters contained substantial
numbers of both autistic and typically developing partic-
ipants. This overlap across diagnostic groups appears to
emphasize the complexity of the individual differences
in neural processes that underlie both the autistic and
typically developing auditory processing.

Description of clusters and associations with other
measures
The results of the present study are not consistent with
the third hypothesis, which predicted that typically de-
veloping participants would be more likely to fall into
clusters characterized by a pattern of neural responses
increasing in strength monotonically as the loudness of
the tones increased, while autistic participants might be
more likely to appear in clusters with either non-
monotonic patterns or unexpectedly strong increases in
neural response strength with intensity. As can be seen
in Fig. 3, the only groups which approximate monoton-
icity are C1 and C2. However, the only cluster in the ob-
served data that trended to have a disproportionate
number of typically developing participants was not C1
but C3, and contrary to prediction, C3’s participants ac-
tually displayed an unexpectedly strong, non-monotonic
responses to softer, 60 dB sounds.
On the other hand, C1 had a disproportionately large

number of autistic participants: this cluster exhibited a
response to 70 dB sounds that was stronger than that
found in any other cluster, as well as a stronger 60 dB
response than C2 or C4. To further characterize this
cluster, one can turn to the various measures and assess-
ments collected in the APP. Curiously, although autistic
participants were more likely to fall into C1 than other
clusters, autistic participants in C1 did not appear to

have more conspicuously atypical phenotypes than autis-
tic participants in other clusters. Indeed, the data reveal
the opposite. Among autistic participants, full-scale and
nonverbal DQ on the MSEL did significantly differ be-
tween clusters, and a similar effect of verbal DQ fell just
short of statistical significance. While results of follow-
up tests no longer attained statistical significance after a
robust correction for multiple comparisons, trends sug-
gest that the significant effects were driven by higher
scores in C1. Replication and further research are
needed to confirm and fully understand these findings,
in part because, as noted in supplementary materials, a
subgroup of participants from C1 would often be reclas-
sified into C2 when subsamples were repeatedly drawn
and re-clustered. However, it is interesting to note that,
in ASD, there were no significant continuous associa-
tions between MSEL scores and normalized GFP in any
loudness condition. This perhaps suggests that the high
cognitive abilities of autistic participants in C1 are driven
not by the strength of their responses to any given inten-
sity (such as their strong 70 dB response) but by their
overall pattern of response monotonicity across loudness
conditions.
Meanwhile, the other approximately monotonic clus-

ter, C2, is characterized primarily by an extremely strong
response to the very loudest, 80 dB stimuli. Autistic and
typically developing participants appeared to have
roughly equal probabilities of being classified into C2,
but membership in C2 appeared to be linked to sensory
behaviors. The fourth hypothesis suggested that auditory
sensory behaviors would be more typical in clusters
characterized by a pattern of neural responses increasing
in strength in a monotonic fashion similar to the typical
grand-average pattern, but C2 does not appear to meet
these criteria. Responses appear roughly monotonic, but
from visual inspection, the strength of the 80 dB re-
sponse seems to greatly exceed the overall grand-
average. Indeed, among autistic participants, exploratory
analyses indicated that caregiver-reported problems with
auditory distractibility were significantly greater in C2
than C4. Furthermore, although the post-hoc effect was
no longer significant after correction for multiple com-
parisons, auditory distractibility problems strongly
trended towards being greater among autistic partici-
pants in C2 than C3. Similarly, continuous associations
suggested that auditory distractibility problems were
greater in autistic participants exhibiting a pattern of
relative neural hyper-responsiveness to loud 70 dB and
80 dB sounds and relative neural hypo-responsiveness to
soft 50 dB sounds.
These findings should be interpreted with care owing

to the ambiguity of the “auditory distractibility” factor;
for example, it seems possible to interpret the SSP items
loading on this factor (“Is distracted or has trouble
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functioning if there is a lot of noise around,” “Can’t work
with background noise,” and “Has trouble completing
tasks when the radio is on”) as signs of general difficulty
functioning in noisy environments rather than distracti-
bility per se. Thus, neural over-responsiveness to loud
sounds in at least a subgroup of autistic participants ap-
pears to be related to abnormal behavior—distractibility
and/or difficulty functioning—in noisy environments.
The possibility that these results could be related to
hyperacusis, which has been observed in ASD [5–8], ap-
pears intriguing. However, such an interpretation must
be considered tentative as the present study does not as-
sess loudness discomfort levels. Furthermore, similar
neural responses in TD participants from C2 were not
linked to any pattern of caregiver-reported auditory sen-
sory behaviors, indicating that the presence of these rela-
tively stronger responses to loud sounds is not a
sufficient condition for auditory sensory sensitivity.
Verbal cognitive ability among typically developing

participants was lower in C2 than C4, with similar but
nonsignificant trends for VDQ to be lower in C2 than
C1 and C3. However, although C2 appeared to be char-
acterized by abnormally strong responses to 80 dB
sounds, the mean VDQ differences between C2 and
other clusters in TD were surprisingly not accompanied
by significant continuous associations between normal-
ized GFP to 80 dB sounds and MSEL VDQ in TD, com-
plicating their interpretation. Replication and further
research appear necessary before this effect can be con-
firmed and understood.

Limitations
The present study has a number of strengths. It is based
on a large, well-characterized sample of autistic and typ-
ically developing participants drawn from a relatively
narrow chronological age range. Many trials were col-
lected from each participant, and data were subjected to
an intensive processing pipeline, allowing us to have
considerable confidence in individuals’ observed average
responses in each loudness condition. Furthermore, the
focus on loudness-dependent normalized responses al-
lows the analysis to circumvent individual differences in
biophysical factors such as skull thickness, while the use
of GFP gives the study an overall metric of neural re-
sponse strength that avoids the need for a priori deci-
sions about analyzing particular components or
electrode sites.
Along with these strengths, the present study has limi-

tations. One is the use of a brief, 38-item caregiver re-
port of sensory behaviors that was not originally
designed for use in autism. Future studies could use
other parent-report measures or, when participants’ ver-
bal abilities permit, self-reports. It should also be noted
that our analyses examined a large number of variables

like MSEL DQ and SSP sensory behaviors in an explora-
tory manner.
Another limitation of the present study is that there is

naturally a loss of information in any procedure (such as
the clustering procedure employed here) that reduces
the complexity of the data. To address this limitation,
future analyses will cluster participants based on the la-
tency of ERP responses. The present analysis also ig-
nores the topographic distribution of neural responses.
The authors plan in future analyses to define clusters
not only based on timing but also on the topographic
distribution of neural responses over pre-defined scalp
regions.
We also acknowledge that the present study did not

involve the collection of hearing acuity measures. This
reflected the difficulty of obtaining reliable estimates of
hearing acuity in young children, especially in groups
with diverse language and cognitive abilities. However,
prior research suggests that there is variability in hearing
acuity within ASD [6, 7]. While the within-participants
normalization of GFP across loudness intensities in the
present study could offer some protection against any
individual differences in overall hearing acuity, this pro-
cedure does not account for non-linearities in the rela-
tions among GFP strength, stimulus intensity, and
hearing thresholds. It is thus unclear how hearing acuity
might relate to the individual differences observed in this
study.
More generally, one might argue that the ultimate goal

of projects examining neural sensory responses—such as
the present study—is to gather information related to
the internal sensory experience of an individual [86].
However, the cortical auditory response from ~80–150
ms post-stimulus onset is only one contributor to these
internal sensory experiences, which are likely to be
emergent properties of many neural processes. Thus,
two individuals with cortical neural responses of equal
strength in the 80–150 ms window might nevertheless
have different sensory experiences. Furthermore, one
must consider that brief auditory complex tones differ-
ing in loudness are only one of the numerous types of
stimuli that exist in the auditory domain alone. This
should not be interpreted as an argument against elec-
trophysiology and other neuroimaging techniques, but as
a buttress to existing suggestions (e.g., by [21]) that mul-
tiple methods should be employed to understand indi-
vidual differences in sensory experience.

Conclusions
We believe that this study demonstrates that clustering
can be used to meaningfully describe the variability of
neurophysiological event-related responses in sufficiently
large datasets and that normalization of responses across
conditions may be valuable in focusing on neural
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variations in response strength across these conditions.
As confirmed by chi-square analysis, autistic and typic-
ally developing participants were distributed significantly
differentially across clusters. Additional analyses sug-
gested that participants in a cluster characterized by
neural hyper-responsiveness to loud sounds exhibited
auditory distractibility/filtering problems; similarly, in
continuous associations, relative neural hyper-
responsiveness to loud sounds was associated with audi-
tory distractibility. Furthermore, autistic participants in a
cluster characterized by relatively monotonic responses
seemed to exhibit higher total cognitive abilities, al-
though post-hoc comparisons fell short of significance
after correction for multiple comparisons. We also ob-
served the effects of cognitive ability in typical develop-
ment, although these findings may require replication
and further research to be understood. Overall, however,
the existence of relationships between cluster member-
ship and other variables suggests that the present clus-
ters constitute and describe meaningful variability,
though we draw no conclusion to the effect that the
clusters represent categorically discrete populations. We
suggest that clustering analyses similar to those used in
this study may be valuable tools in future research de-
scribing additional dimensions of neural heterogeneity.
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