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Abstract 

Background: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 
1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication 
at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations 
and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren 
syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique refer-
ence to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical 
region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of 
WBS and 7Dup both from mouse models and human studies.

Methods: We performed a high-throughput screening of 1478 compounds, including central nervous system 
agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons dif-
ferentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation 
of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were 
validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting.

Results: We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal 
expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC 
lines. We confirmed this effect also at the protein level.
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Background
Autism spectrum disorder (ASD) comprises a highly 
prevalent group of neurodevelopmental disorders (NDD) 
affecting almost 1% of children. Children diagnosed with 
ASD exhibit impairments in language and social interac-
tion coupled to stereotyped behaviors and, in many cases, 
the co-occurrence of varying degrees of intellectual dis-
ability (ID) [1]. Due to its extremely high prevalence and 
the lack of effective therapies, ASD represents a major 
unmet medical need. Despite the phenotypic conver-
gence of its core symptoms (modulated over an ample 
range of expressivity, whence the term spectrum), ASD is 
phenotypically and genetically highly heterogeneous with 
over 400 identified causal genetic alterations reinforcing 
the view of ASD as a collection of rare genetic conditions 
[2]. The presence of similar core symptoms across the 
genetic spectrum of ASD suggests that few paradigmatic 
syndromes might make the understanding of ASD causes 
and therapeutic interventions feasible.

As a matter of fact, duplication of a segment of chro-
mosome 7 at 7q11.23 comprising 26–28 genes, one of 
the best-characterized copy number variations (CNVs) 
underlying ASD (7Dup) [3, 4], might yield invaluable 
insights into ASD pathophysiology, also because it is 
symmetrically opposite to the hemideletion of the same 
interval that causes Williams–Beuren Syndrome (WBS), 
a multisystemic disease including hypersociability and 
selectively spared verbal abilities despite their mild to 
moderate ID and a severely compromised visual–spatial 
processing and planning [5]. Almost all WBS patients 
have mild to moderate ID, while only a minority of 7Dup 
patients show ID. Moreover, both syndromes are char-
acterized by anxiety and attention deficit hyperactivity 
disorder (ADHD). 7Dup patients show a range of ASD 
traits, especially in terms of varying degrees of language 
impairments and social restriction (Fig.  1a). The com-
bination of symmetrically opposite CNVs resulting into 
symmetrically opposite behavioral phenotypes offers 
unique opportunities to dissect the dosage-vulnerable 
circuits that affect language competence and sociability.

Consequently, compounds that modulate gene dosage 
alterations may provide therapeutic options into ASD 
pathophysiology that so far has been notoriously difficult. 
To date, several disease modeling studies have demon-
strated that the use of different induced pluripotent stem 
cells (iPSCs)-derived cell types in different disease-rele-
vant conditions is suitable for high-throughput screening 
(HTS), confirming the high potential of iPSCs and their 
differentiated derivatives in pharmacological research 
[6–9]. The process from basic research to bedside is very 
long, expensive, and poses a number of risks and difficul-
ties along the way, with the result that the number of new 
potential therapeutic compounds that actually become 
drugs is very low. The process of drug repositioning 
makes the drug discovery process much shorter because 
the initial phases of drug discovery have already been 
performed. Therefore, this represents a unique alterna-
tive tool for the unmet medical need related to many 
genetic diseases, including neurodevelopmental disor-
ders [10, 11].

Among the different classes of existing drugs, histone 
deacetylase inhibitors (HDACi) are an interesting cat-
egory of therapeutics with potential as anticancer drugs 
[12]. There is a vast literature demonstrating the involve-
ment of HDACs in suppressing critical genes in different 
types of cancer, including brain tumors [13–15]. Inter-
estingly, HDACi are now being considered as potential 
therapeutics also for neuropsychiatric disorders [16, 17].

Among the genes of the 7q11.23 region, general 
transcription factor II-I (GTF2I) has key relevance: 
it mediates signal-dependent transcription and plays 
a prominent role in various signaling pathways [18]. 
Most importantly, convergent evidence has implicated 
GTF2I as a major mediator of the cognitive-behavioral 
alterations in 7Dup [19–21]. Using iPSCs from 7Dup 
patients, we discovered that GTF2I is responsible 
for a large part of transcriptional dysregulation, evi-
dent at the pluripotent state, which is amplified upon 
differentiation into neural progenitors. Specifically, 
GTF2I recruits lysine demethylase 1 (LSD1) to repress 

Limitations: In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The 
lead compounds identified will now need to be advanced to further testing in additional models, including patient-
derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in 
order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline 
towards clinical use.

Conclusions: These results represent a unique opportunity for the development of a specific class of compounds for 
treating 7Dup and other forms of intellectual disability and autism.

Keywords: Autism spectrum disorder, 7q11.23 duplication syndrome, Intellectual disability, High-throughput 
screening, HDAC inhibitors, Induced pluripotent stem cells, Neurons, GTF2I
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transcription of critical neuronal genes, an effect that 
is rescued by inhibition of LSD1 [22], a potential target 
for therapeutic intervention.

On the basis of these convergent lines of evidence, the 
identification, in patient-derived neurons, of compounds 
that restore normal expression of genes from CNV 

causative of ASD represents a promising upstream strat-
egy to develop novel therapies for ASD.

In this work, we set out to identify compounds that 
can restore the expression levels of key genes from the 
WBSCR, i.e., increasing or decreasing their expression 
in, respectively, WBS or 7Dup neurons. For the above 
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Fig. 1 Symmetric copy number variations at 7q11.23. a Schematic representation of genotype–phenotype correlation in WBS and 7Dup patients, 
compared to healthy control (CTL), indicating opposite and shared phenotypes. Genomic organization of WBS region with the 17 genes that are 
significantly expressed in neurons, in bold the four genes selected for their critical role in the pathogenesis of both WBS and 7Dup. b Lentiviral 
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white triangles represent terminal repeats of the transposon
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reasons, we selected as targets GTF2I along with three 
additional genes within the 7q11.23 region, namely 
BAZ1B, CLIP2 and EIF4H, that emerged as critical for 
their role in the pathogenesis of WBS and 7Dup [23]. 
In particular, BAZ1B is a chromatin remodeler that is 
involved in maintenance and migration of neural crest 
cells playing an important role in the evolution of modern 
human faces and thus being a prime candidate to study 
disease-associated craniofacial alterations [24, 25]; CLIP2 
is a microtubule-binding protein abundantly expressed 
in neurons whose haploinsufficiency might contribute to 
the cerebellar and hippocampal dysfunctions observed 
in the WBS [26]; EIF4H is a translation initiation factor 
mediating protein synthesis that might be involved in 
growth retardation in EIF4H knockout mice [27, 28].

Methods
Human samples
Participation by patients and their relatives in the stud-
ies [22,  25], that led to the establishment of iPSC lines, 
were approved by the respective ethics committees fol-
lowing the informed consent and ethics review proce-
dures in place. The fibroblast biological samples from 
which we derived the iPSC lines harboring 7q11.23 CNV, 
along with the controls, are archived in the Genetic and 
Genomic Disorders Biobank (GDBank), which is part 
of the Telethon Network of Genetic Biobanks (TNGB). 
https ://www.telet hon.it/en/scientists/biobanks. The pri-
mary fibroblasts samples were collected from the follow-
ing sources:

The Genetic and Genomic Disorders Biobank 
(GDBank) (Dr. Giuseppe Merla, Casa Sollievo della Sof-
ferenza, San Giovanni Rotondo (Italy) for samples Ctl01C 
(Female), WBS01C (Male), WBS02C (F), Dup02K (F), 
Dup03B (M). Dr. Paolo Prontera, University of Perugia 
(Azienda Ospedaliera–Universitaria “Santa Maria della 
Misericordia”, Perugia, Italy) for line Dup01G (M). Dr. 
Frank Kooy, University of Antwerp, Antwerp (Belgium) 
for line Dup04A (M). The Wellcome Trust Sanger Insti-
tute, Cambridge (UK) provided upon purchase the iPSC 
line Ctl08A (M).

A SNPs profiling was performed on iPSC lines using 
the Illumina GSA beadchip GSA MD v1 kit (Illumina 
GSA Arrays “Infinium iSelect 24 × 1 HTS Custom 
Beadchip Kit”) by The Human Genomics Facility of the 
Genetic Laboratory of the Department of Internal Medi-
cine at Erasmus MC (Rotterdam). We regularly perform 
genomic quality control of cell lines used by short tan-
dem repeat (STR)-based approach (Additional file  1: 
Table S1).

Fibroblasts were reprogrammed using the mRNA 
Reprogramming kit (Stemgent) or with the microRNA 
Booster kit, as previously described [22, 25].

iPSCs lentiviral infection and PiggyBac system
Patient-derived iPSC lines were infected with an activa-
tor lentivirus, containing the reverse tetracycline transac-
tivator (rtTA) constitutively expressed under the control 
of the UbC promoter, and an effector lentivirus, con-
taining an NGN2-P2A-EGFP-T2A-Puro cDNA under 
the control of the tetracycline responsive element [29] 
(Fig.  1b, top). Infected iPSCs were sorted as single cells 
in 96-well plates, selected based on the round morphol-
ogy of colonies and gradually expanded. Selected lines 
were then induced for one day adding doxycycline to 
the medium. GFP-positive lines were then selected and 
expanded, further being stabilized and characterized. 
Through this system, we generated the iPSC monoclonal 
lines WBS01CN3 (WBS) and DUP01GN4 (7Dup).

To establish a robust and rapid neuronal differen-
tiation method, we utilized a direct conversion technol-
ogy. Mouse Ngn2 cDNA, under tetracycline-inducible 
promoter (tetO), was transfected into iPSCs by a newly 
developed enhanced PiggyBac (ePB) transposon system 
[9, 30, 31] (Fig. 1b, bottom). 4 × 105 iPSCs, for each line, 
were electroporated with 2.25  μg of the ePB construct 
carrying the inducible Neurogenin-2 (NGN2) overex-
pression cassette and 250  ng of the plasmid encoding 
transposase for the genomic integration of the induc-
ible cassette. Electroporations were performed using the 
Neon Transfection System (MPK10096, Thermo Fisher 
Scientific). iPSCs were selected using blasticidin 5 μg/ml 
(R21001, Gibco) for five days and stable iPSC lines were 
stocked. Through the ePB system, we generated the fol-
lowing polyclonal lines: Ctl01C, Ctl08A (CTL): WBS01C, 
WBS02C (WBS); Dup03B, Dup04A, Dup01G, Dup02K 
(7Dup).

NGN2 differentiation into cortical glutamatergic neurons
In order to obtain cortical glutamatergic neurons (iNs), 
on day -1 iPSCs were dissociated with Accutase (GIBCO, 
Thermo Fisher Scientific) and seeded in plates coated 
with 2.5% (v/v) Matrigel (Corning) in mTeSR™ supple-
mented with ROCK inhibitor (STEMCELL Technolo-
gies). iPSCs were then cultured in MEM1, composed 
by DMEM/F12 1:1 (Euroclone/Gibco) supplemented 
with NEAA 1%, N2 1%, BDNF 10  ng/ml, NT-3 10  ng/
ml, Laminin 0.2  μg/ml and 2  μg/ml doxycycline hydro-
chloride, from day 0 to day 1. On day 1, puromycin 1 μg/
ml was added to MEM1 and, on day 2, the medium was 
changed with NBM Plus, composed by Neurobasal Plus 
(Thermo Fisher Scientific) supplemented with 50 × B27 
Plus supplement (GIBCO, Thermo Fisher Scientific), 
Glutamax 0.25% (Thermo Fisher Scientific) and 2 μg/ml 
doxycycline hydrochloride. On day 7, differentiated neu-
ronal cells were dissociated with Accutase and seeded 
into poly-d-lysine-coated 96-well plates (Corning) at a 

https://www.telethon
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density of 20.000 cells/well in NBM Plus; culture medium 
was then changed 50% once a week until day 28.

Immunocytochemistry
Neurons were fixed in 4% paraformaldehyde in PBS for 
15  min at room temperature immediately after removal 
of culture medium, and pipetting was done slowly to pre-
vent dislodging cells from coverslips. The cells were then 
washed three times for 5  min with PBS, permeabilized 
with 0.1% Triton X-100 in PBS for 15 min, and blocked 
in 5% donkey serum in PBS for 30  min. After blocking, 
the cells were incubated with primary antibodies diluted 
in blocking solution overnight at + 4  °C. The cells were 
washed three times with PBS for 5  min and incubated 
with secondary antibodies at room temperature for 1 h. 
Nuclei were then stained with DAPI solution at room 
temperature for 10 min. Coverslips were rinsed in sterile 
water and mounted on a glass slide with 7–8 μl of Mow-
iol mounting medium.

Cellomics
Neurons in 96-well plates were fixed in 4% paraformalde-
hyde in PBS, permeabilized with 0.1% Triton X-100 and 
then counterstained with DAPI to enable autofocusing of 
the automated Thermo Scientific ArrayScan VTI High-
content screening microscope (Cellomics). Cell counting 
of validated objects was done in the DAPI channel and in 
the GFP channel.

Automation protocol
All liquid handling was done in an automated manner by 
a TECAN Freedom EVO automated platform under con-
trol of EVOware® software. The TECAN has been pro-
grammed to prepare up to 20 96-well plates in a single 
run, which would produce 1080 individual datapoints. 
The modular robotic scripts were designed as building 
blocks for users with minimal automation programming 
experience to assemble an automated process from cells 
preparation to sample analysis. We prepared scripts for 
compound treatment, RNA and cDNA dilution (and 
predilution if necessary), reagent addition (Cells-to-CT, 
RT), and samples re-positioning in pre-spotted 384-well 
plates. Each module contained user-friendly interfaces 
for inputs of assay variables, such as volumes, dilution 
factors and plate maps. The liquid-handling robot used in 
this work is a Tecan Freedom EVO-2 150 liquid handling 
unit equipped with a 96-well head-adapter with filter 
tips; the pipetting volume range was from 10 to 1000 μl. 
The Freedom EVO worktable was loaded with three solu-
tion reservoir carriers (1 × Trough 100  ml, 3 Pos. and 
2 × Trough 25 ml, 3 Pos.), two 96-well plate carriers (96-
well, 6 Pos.), and one 384-well plate carrier (96-well, 3 
Pos.).

Quantitative RT‑PCR
A custom TaqMan Cells-to-CT™ kit (Invitrogen 
AM1729) was used to extract the RNA and perform 
reverse transcription to obtain cDNA, according to the 
manufacturer’s instructions. After media aspiration, 30 μl 
of 2 × lysis solution, with diluted DNaseI, were added to 
30 μl of the remaining buffer in each well; then the plate 
was incubated for 5  min at room temperature. Subse-
quently Stop solution (3 μl) was added and the solution 
was incubated at room temperature for 2 min. Then, 30 μl 
of lysates was transferred to a new PCR plate with 40 μL 
of reverse transcription enzyme mix previously added to 
each well. The thermal cycling conditions were: 60 min at 
42 °C, and 5 min at 85 °C. cDNA was diluted with 50 μl 
of water and then a 5 μl aliquot of each cDNA reaction 
was added to 5 μl of each TaqMan master mix reaction 
into pre-spotted custom 384-well plates. A QuantStu-
dio 6 Flex Real-Time PCR system (Applied Biosystems) 
was utilized to determine the Ct values. Relative mRNA 
expression levels were normalized to housekeeping genes 
and analyzed through the comparative delta-delta Ct 
method using the QBase Biogazelle software.

Hit selection
We used a strategy based on fold-difference analysis of 
target genes, comparing compound- to DMSO control-
treated wells. Hits were defined as more than twofold 
increase or less than 0.5-fold decrease in at least three 
out of four genes, or in at least GTF2I. Thirty-five com-
pounds fulfilled the first criteria and 36 compounds the 
second one in the primary screening.

Antibodies
The following antibodies were used for Western Blot 
analysis: pAb anti-GTF2I 1:1000 (A301-330A, Bethyl 
Laboratories), pAb anti-GAPDH 1:5000 (ABS16, Merck 
Millipore) and secondary antibody horseradish per-
oxidase-conjugated donkey anti-rabbit (Pierce). The 
following antibodies were used for immunocytochem-
istry analyses: NeuN 1:500 (MABN140, Sigma-Aldrich), 
TUBB3 1:1000 (PRB-435P, BioLegend), MAP2 1:500 
(M9942, Sigma-Aldrich), vGlut1 1:1000 (135303, Synap-
tic Systems), SATB2 1:200 (ab51502, Abcam), Synapsin 
1/2 1:1000 (106004, Synaptic Systems).

Chemicals
Epigenetics compound library: Selleckchem Cat. N° 
L1900; Bioactive compound library: Food and Drug 
Administration (FDA) approved and clinical compounds 
selected from the Library of Pharmacologically Active 
Compounds (LOPAC, Sigma) and the Spectrum Col-
lection (MicroSource Inc). Both in the primary screen-
ing and in validation experiments, a single dose of each 
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compound was added to neurons at the final concentra-
tion of 10 μM in 0.1% DMSO for 48 h.

Protein extraction and immunoblotting
Proteins were extracted from iNs grown in 10 cm or six-
well plates by washing the cells with ice-cold PBS, fol-
lowed by immersion in lysis buffer (25 mM Hepes pH 7.5, 
300  mM NaCl, 10% glycerol, 1% NP-40) supplemented 
with cOmplete™ protease inhibitor cocktail (Sigma). 
Lysates were sonicated using the Bioruptor Sonica-
tion System (UCD200) for three cycles of 30 s with 60-s 
breaks at high power and then centrifuged at 13,000g for 
15  min. Protein quantification was performed using the 
Bradford protein assay (Bio-Rad) following the manu-
facturer’s instructions. Protein extracts (10–20  μg per 
sample) were run on a precast NuPAGE 4–12% Bis–Tris 
Gel (NP0335BOX, Life Technologies), transferred to a 
nitrocellulose membrane and blocked in TBST (50  mM 
Tris, pH 7.5, 150 mM NaCl and 0.1% Tween-20) and 5% 
milk at room temperature for 1 h. Primary and secondary 
antibodies were diluted in TBST and 5% milk. The immu-
noreactive bands were detected by ECL (GE Healthcare) 
and imaged with a ChemiDoc XRS system (Bio-Rad Lab-
oratories). Densitometric analysis was performed using 
the ImageLab 4.1 Software (Bio-Rad Laboratories).

Data analysis
Qbase + software version 3.0 (Biogazelle, Zwijnaarde, 
Belgium) was used to analyze the variability of the genes 
tested and to determine the hit compounds. The geomet-
ric mean of the cycle threshold value of the endogenous 
control genes GAPDH, SRSF9 and RPS18 was used to 
normalize the data, and the DMSO-treated samples were 
used as calibrator.

Statistical analysis
Statistical analyses were performed using PRISM (Graph-
Pad, version 6.0). Results are expressed as means ± SD 
or means ± SE. Statistical significance was determined 
according Holm–Sidak-corrected t test, considering each 
iPSC line as biological replicate (n) or according to a one 
way ANOVA test as indicated in figure legends. Dunnett’s 
multiple comparison test was used to determine the level 
of significance. Asterisks indicate statistical significance 
(*P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.0001).

Results
NGN2‑driven neurogenesis retains the defining 
transcriptional imbalances of 7q11.23 CNV
With the goal of identifying compounds capable of 
restoring the physiological expression levels of the four 
aforementioned genes from the WBSCR, we set out to 
establish HTS-proof conditions for the differentiation 

and maintenance of patient-derived cortical neurons, 
starting off with the NGN2-driven system of iPSC differ-
entiation [29] and adapting it to HTS as follows.

First, we reasoned that, in a HTS setting inherently 
prone to fluctuations in numerous technical variables, 
the use of lines with a fixed number of integrations would 
help reduce the confounding variables intrinsic to the 
differentiation of polyclonal batches with an unchecked 
diversity of copy number integrations of the NGN2 
transgene. Thus, we used an NGN2 expressing lentivi-
rus to generate a stable monoclonal iPSC line originally 
reprogrammed from a patient harboring the WBS dele-
tion (hereafter WBS01CN3 line).

Second, since the original NGN2-driven protocol [29] 
relied on astrocytes to support neuronal growth but their 
presence would have interfered with gene expression 
analysis in neurons, we used a new formulation medium 
(NBM Plus) that allowed to replace astrocytes and mini-
mize media changes, thus also reducing the automation 
complexity of the HTS. Third, we adapted the differen-
tiation protocol to a HTS platform by first seeding the 
iPSCs and culturing them in large batches on Matrigel-
coated 15 cm dishes and then detaching them for seed-
ing on poly-d-lysine coated 96-well plates (Fig.  2a). We 
validated the robustness of this protocol by both immu-
nocytochemistry and RT-qPCR. Forced NGN2 expres-
sion converted iPSCs into mature neuronal morphology 
in 28 days with a rapid decline of the neural progenitor 
marker Nestin and an increase in the expression of the 
synaptic marker Synaptophysin (Fig.  2b). iPSC-derived 
NGN2-induced neurons (iNs) express glutamatergic 
markers like vGLUT1, cortical markers such as SATB2 
and the expected combination of both early neuron 
markers like TUBB3 and mature neuron markers as 
MAP2, NeuN and the synaptic marker Synapsin 1/2 
(Fig. 2c).

We also analyzed the expression levels of SATB2, 
MAP2 and SYN1 in both WBS and 7Dup iNs compared 
to healthy control (CTL) iNs, using Syntaxin1A (STX1A), 
a WBSCR gene, as internal control of symmetrical dosage 
imbalance. While SATB2 and SYN1 show an increased 
expression in both 7Dup and WBS iNs compared to CTL, 
MAP2 does not show 7q11.23 dosage-dependent altera-
tions in expression levels (Additional file  2: Fig.  S1A). 
Moreover, as a baseline evaluation of HTS-relevant neu-
ronal morphology, we performed a morphometric Sholl 
analysis of dendrites in WBS, 7Dup and CTL iNs, plot-
ting the number of intersections with circles centered 
on the soma against the distance from the cell body. 
Detailed analysis of neurons revealed unaltered complex-
ity for both basal and apical dendrites across the three 
genotypes (Additional file 2: Fig. S1B, C), unlike what was 
previously reported [32], likely reflecting a differential 
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Doxy: doxycycline; Puro: puromycin. b RT-qPCR analysis of Nestin and Synaptophysin mRNA expression (mean ± SE) in NGN2 neurons (WBS01CN3 
line) at 2, 3, and 4 weeks of differentiation. The expression level is normalized against GAPDH, and further standardized to iPSCs levels. c Day 28 
WBS01CN3 neurons express mature excitatory cortical neuron markers: NeuN, TUBB3, Synapsin 1/2, MAP2, VGLUT1 and SATB2. d mRNA levels 
of genes in the WBS region, BAZ1B, CLIP2, EIF4H and GTF2I (mean ± SD), in iPSC lines (left) and in NGN2-induced neurons (right) in the three 
genotypes (WBS, CTL, 7Dup) (n = 2). CTL: Ctl01C, Ctl08A; WBS: WBS01CN3, WBS02C; 7Dup: DUP01GN4, Dup02K. Relative expression was measured 
by RT-qPCR, to GAPDH and results were arbitrarily normalized to mRNA levels of CTL (asterisks indicate statistical significance according to a 
one-way ANOVA test: *P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.0001)
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expressivity of 7q11.23 CNV, in terms of morphological 
readout, dependent on different protocols of neuronal 
differentiation.

Finally, we confirmed that the transcriptional levels of 
BAZ1B, CLIP2, EIF4H and GTF2I mirrored the symmet-
rical gene dosage in both WBS and 7Dup iNs compared 
to CTL, confirming that the gene dosage imbalance is 
maintained and amplified upon cortical neuronal dif-
ferentiation (Fig.  2d) and hence that it represents a 
rational target for a mechanistically based therapeutic 
intervention.

Establishment of an in vitro platform for drug screening
In order to screen large chemical libraries, we defined 
disease-relevant models for WBS and 7Dup suitable for 
HTS. We tested the differentiation protocol with a WBS 
line (WBS01CN3) to establish the proper conditions for 
adaptation to a miniaturized HTS format (Fig.  3a). We 
obtained optimal cell-plating settings for 96-well plates 
using poly-d-lysine coated plates by seeding 20.000 cells/
well. Cellular growth and percentage of GFP positive 
cells were monitored by automated cell counting after 
Dapi-nuclear staining through 5  weeks of differentia-
tion. An expected slight decrease of total cell number was 
observed over the course of differentiation, while GFP 
positive cells percentage remained stable around a 70%. 
On these bases, 28 DIV (days in vitro) has been chosen 
as time point to perform the in vitro assay (Fig. 3b). Good 
consistency and reproducibility have been found once 
assessed cell plating consistency for three plates from a 
single round of differentiation considering both cell num-
ber (Fig. 3c, left panel) and GFP positivity (Fig. 3c, right 
panel). Optimal morphology and proliferation charac-
teristics of iPSC lines were checked periodically, and the 
lines were kept in culture for no more than 2 months, the 
duration of the screening.

To develop an iN-based HTS assay, considering the 
relevance that could have for both WBS and 7Dup in 
correcting the genetic imbalance, we envisaged that 
promising compounds could restore mRNA levels of 
four genes in the WBS region, namely GTF2I, BAZ1B, 
CLIP2 and EIF4H. Therefore, we selected TaqMan qRT-
PCR assays for measuring the expression levels of these 
genes against our internal controls GAPDH, SRSF9 and 
RPS18. Transcript levels were measured after cell lysis, 

RNA extraction, qRT-PCR and data quantification. 
DMSO had no major impact on growth of iNs and on 
mRNA levels up to 0.5% DMSO (v/v) (Fig. 3d). Finally, 
having checked all the parameters, we proceeded with a 
moderate-sized screening of around 100 96-well plates 
of iNs.

We screened a library of 1478 small molecules in bio-
logical triplicate (4434 treatment conditions in total). 
Our screening library comprises an extensive variety of 
compounds, including e.g. central nervous system (CNS) 
agents, natural compounds, hormonal agents, epigenetic 
and immune system modulators, antioxidants (Fig.  4a). 
The compounds were selected analyzing an internally 
available Chemical Collection of more than 200.000 
compounds composed by FDA-approved drugs, bioac-
tive compounds (including preclinical and clinical com-
pounds), a kinase target library, a fragment library and a 
commercially available screening library. During the pro-
cess of selection, pain assay interference compounds and 
molecules presenting known reactive and/or toxic moie-
ties have been filtered and removed. Among the remain-
ing compounds, approved drugs, preclinical and clinical 
molecules have been preferred with the aim of accelerat-
ing the path from discovery to patients.

Epigenetic compounds have been largely represented 
inside the preclinical compounds envisaging a relevant 
role of chromatin perturbation and epigenetic modifica-
tions for the considered pathology.

Compounds were screened at 10  μM in 0.1% DMSO, 
with each plate containing three DMSO control wells. 
We used the WBS patient-derived monoclonal line 
WBS01CN3 for the first HTS, looking for molecules that 
restore the gene dosage of BAZ1B, CLIP2, EIF4H and 
GTF2I in patient-specific iNs. To validate our qRT-PCR 
assay, we measured parameters of the screening work-
flow, as coefficient of variation (CV), to demonstrate 
consistency in Ct values in the four batches of cell plates. 
Differences in Ct values were minimal among replicate 
wells of the same batch giving a CV < 20% (Fig. 4b). The 
strategy we used to nominate candidate hits out of the 
1478 compounds tested in triplicate was based on fold-
difference analysis of WBS genes to housekeeping genes, 
comparing compound wells to DMSO control-treated 
wells. Compounds that gave rise to increased GAPDH Ct 
values > 3 SD, compared to DMSO values, or to GAPDH 

(See figure on next page.)
Fig. 3 HTS workflow outline. a Compounds were tested at 10 μM for 48 h on NGN2 neurons seeded in 96-well plates. After RNA extraction and 
cDNA preparation, custom TaqMan Array 384-well plates were assembled through an automated TECAN Freedom EVO workstation. RT-qPCR were 
performed in QuantStudio™ 7 Flex Real-Time PCR System. b DAPI-stained (left) and GFP-positive (right) WBS01CN3 NGN2 neurons counted with 
Cellomics during differentiation. c Normalization panel for quantification of cell number (left) and GFP positive cells (right) in three different 96-well 
plates at DIV 28 (WBS01CN3 line). d Relative expression of BAZ1B, CLIP2, EIF4H, and GTF2I mRNA (mean ± SE) in day 28 WBS01CN3 neurons was 
measured by RT-qPCR, upon treatment with different DMSO concentrations. Highlighted in bold the DMSO concentration chosen for the screening
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a

d

b

c

Fig. 4 Primary screening of a pharmaceutical compound library. a Composition of the compound library (1478 compounds). b Robustness of 
primary HTS setup. For each batch of plates, control run statistics with average Ct values (Avg.) of GAPDH and SRSF9 housekeeping genes, their SD 
and CV are summarized. c Exclusion and inclusion criteria of the primary screening.  d Scatter plot of the primary screening. All compounds were 
tested at 10 μM for 48 h. Fold changes compared with DMSO control were plotted for each gene (BAZ1B, CLIP2, EIF4H, GTF2I) in WBS01CN3 NGN2 
neurons. Selected hits are shown for GTF2I
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Ct values > 30 were excluded from the analysis, as reveal-
ing high cellular toxicity (Fig. 4c).

Hits were defined as more than twofold increase or less 
than 0.5-fold decrease in at least one out of the four genes 
(Fig. 4c, d). Thirty-five compounds fulfilled the first crite-
ria and were further analyzed under standard 6-well plate 
culture conditions, but we did not confirm any com-
pound able to increase more than twofold the expression 
levels of the target genes in WBS neurons.

HDAC inhibitors specifically lower the mRNA 
and the protein levels of GTF2I in 7Dup induced neurons
While the above results uncover the WBS gene dosage as 
particularly resilient to any attempt at positive transcrip-
tional modulation, at least within the chemical universe 
we explored in this screening, we noticed negative tran-
scriptional modulation by specific compounds such as 
domatinostat, which decreased the expression levels of 
GTF2I, in the WBS genetic background (Fig. 4d), without 
any significant transcriptional modulation of the other 
three genes BAZ1B, CLIP2 and EIF4H compared to the 
vehicle control (DMSO) (Fig. 5a). We thus reasoned that 
such compounds that are able to further lower, even in 
a haploinsufficient context, critical WBSCR genes such 
as GTF2I could prove particularly useful to rescue the 
transcriptional imbalance of the symmetrical 7q11.23 
syndrome. For this purpose, we generated several poly-
clonal lines, i.e. Dup03B, Dup04A, Dup01G and Dup02K, 
using the ePB based system containing the same NGN2 
cassette that we used for the monoclonal lines. We thus 
tested domatinostat at the same concentration (10  μM 
for 48  h) in 28-day-old 7Dup iNs (i.e., harboring the 
symmetrically opposite genetic lesion) and confirmed 
the specific effect of lowering GTF2I levels (Fig. 5a). We 
thus set out to expand this observation to other com-
pounds within the epigenetic subset of our HTS library. 
We observed that 20 out of 22 epigenetic compounds 
tested in the validation process, lowered GTF2I levels in 
7Dup iNs, and, interestingly, they all belong to the class 
of HDAC inhibitors (Fig. 5b). Indeed, both JNJ-7706621 

and UNC0379, which are, respectively, a CDK inhibitor 
and a histone methyltransferase inhibitor, have no effect 
on GTF2I mRNA (Fig. 5b).

In order to characterize these hits in greater detail and 
prioritize them, we carried out an analysis of their selec-
tivity profile as well as of the chemical diversity and of 
their pharmacokinetic properties. This led us to select 
the following three compounds, vorinostat, mocetinostat 
and RG2833, according to the parameters of (i) blood–
brain barrier (BBB) penetration ability, (ii) FDA approval, 
and (iii) HDAC class/type selectivity (Table  1). On this 
basis, we went on to validate the GTF2I-lowering effect of 
the three selected compounds on multiple 7Dup patient-
derived lines, so as to secure the generalizability of our 
findings across a heterogeneity of human backgrounds 
harboring the 7q11.23 duplication. We confirmed that 
the three selected HDACi lower the expression levels of 
GTF2I in 7Dup 28-day-old neurons derived from four 
genetically different iPSC lines, i.e. Dup03B (Fig.  5c), 
Dup04A (Fig. 5e), Dup01G (Fig. 5g) and Dup02K (Fig. 5i). 
The effect of HDACi on GTF2I was confirmed also at a 
protein level in Dup03B (Fig. 5d), Dup04A (Fig. 5f ) and 
Dup01G (Fig. 5h) iNs. Specifically, vorinostat emerged as 
the most promising in reducing consistently also the pro-
tein levels of GTF2I, to a degree comparable to the tran-
scriptional readout and in a reproducible manner across 
different patient-derived iNs, while mocetinostat and 
RG2833 showed more variable correspondence between 
transcript and protein level assays across patient-derived 
iNs.

In order to define the compounds’ effect across the 
7q11.23 interval, we expanded our gene expression 
analysis testing the effect of vorinostat, mocetinostat, 
and RG2833 on 13 additional genes of the WBS region, 
prioritizing those most relevant to the neuronal patho-
physiology of the 7Dup (Additional file  3: Fig.  S2A) 
[23]. Interestingly, we observed that the three com-
pounds decrease the expression levels of GTF2IRD1 and 
VPS37D, along with GTF2I (Additional file  3: Fig.  S2B, 
right panel), while vorinostat and mocetinostat slightly 

(See figure on next page.)
Fig. 5 HDAC inhibitors lower the mRNA and the protein levels of GTF2I in 7Dup iNs. a Relative expression of BAZ1B, CLIP2, EIF4H, and GTF2I 
mRNA (mean ± SD) in WBS01CN3 and Dup02K iNs (n = 2) treated with Domatinostat 10 μM compared to control (DMSO). Error bars represent 
variation between lines of the two genotypes (Holm-Sidak-corrected t test ***P < 0.001). b Relative expression of GTF2I mRNA (mean ± SD) in two 
7Dup-derived iNs, Dup02K and Dup01G, treated with different classes of epigenetic compounds compared to control. Error bars represent variation 
between the two above-mentioned iN lines (one way ANOVA test: *P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.0001). Relative expression of GTF2I 
mRNA (mean ± SE) in Dup03B (c), Dup04A (e), Dup01G (g) and Dup02K (i) iNs treated with vorinostat 10 μM, mocetinostat 10 μM and RG2833 
10 μM compared to control. Relative expression was measured by RT-qPCR, normalized against GAPDH-SRSF9-RPS18 geometric mean. In c, e, g, i 
error bars represent variation between three technical replicates. Protein levels of GTF2I in Dup03B (d), Dup04A (f) and Dup01G (h) iNs treated with 
vorinostat, mocetinostat and RG2833 10 μM each compared to control. Immunoblot (left) and densitometric analysis (right). j Protein levels of GTF2I 
in Dup04A iNs treated with different concentrations of vorinostat (0,1-1-10 μM) compared to control. Immunoblot (left) and densitometric analysis 
(right)
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decrease the expression level also of CLIP2. Four genes 
show a trend of increase upon treatment while most of 
the remaining genes in the region show no major changes 
in expression levels (Additional file  3: Fig.  S2B, left and 
central panel) (Additional file 4).

Given the key role played by GTF2I in the pathophysi-
ology of both syndromes [19–21, 33–35], alongside initial 
evidence linking its polymorphisms to sociability metrics 
in the wider population [36], the largely selective effect of 
the three compounds provides thus a promising basis for 
the translation of these findings, especially in the context 
of a chronic treatment meant to provide cognitive/behav-
ioral amelioration (GTF2I dosage-dependent) while leav-
ing largely unaffected the regulation of other 7q11.23 
genes with pleiotropic functions.

Combining these observations, we thus selected vori-
nostat as our top lead, and treated Dup04A neurons with 
different concentrations of vorinostat to define a dose–
response range, finding that the reduction of GTF2I pro-
tein levels was maintained down to 1 μM (Fig. 5j).

Discussion
WBS and 7Dup are two paradigmatic neurodevelopmen-
tal disorders whose unique alignment of symmetrically 
opposite CNV and symmetrically opposite phenotypes in 
sociality and language provides unique glimpses into the 

molecular architecture of ASD. We previously character-
ized the effect of 7q11.23 CNV in early human lineages 
through the first and largest cohort of iPSC for a disease-
causing symmetrical CNV. This revealed major transcrip-
tional dysregulation already apparent at the pluripotent 
state and that was further exacerbated upon differentia-
tion in disease-relevant lineages, including cortical neu-
ral progenitors [22]. Subsequent work by us and others 
has meanwhile expanded the characterization of 7q11.23 
iPSC-based disease models to the morphofunctional 
level, respectively, in neural crest lineages harboring the 
symmetrically opposite 7q11.23 dosage [25] and in neu-
ronal lineages carrying the 7q11.23 hemydeletion [32].

Here we present the first exploration, via HTS, of 
a large chemical space in search of clinically relevant 
compounds to restore the transcriptional dosage of key 
WBSCR genes, that led us to the following results.

First, we introduced an adaptation of the NGN2-driven 
conversion of iPSCs into functional iNs [29, 37] to an 
automation-intensive HTS format, which can serve as 
template to streamline further drug screening and/or 
repurposing campaigns targeting cortical glutamater-
gic neurons. Specifically, this entailed benchmarking of 
HTS-proof conditions attuned to the specific challenges 
of patient-derived iPSCs and iNs, including compari-
son of culture conditions or modes of NGN2 transgene 

Table 1 Selection criteria for HDACi

Molecule name Selectivity Development status Maximum 
development 
phase

FDA 
approved

BBB penetration Half‑life (h)

Entinostat HDAC 1, 3 Investigational 3 0 Limited/poor 33–150 [63]

JNJ-26481585 Pan HDAC Investigational 2 0 Not reported 8,8 [64]

Pracinostat Pan HDAC Investigational 2 0 Yes in mice 5,6–8,9 [65]

Panobinostat Pan HDAC Marketed 4 1 Limited 16 [66]

Belinostat Pan HDAC Marketed 4 1 Limited 1,5 [67]

Trichostatin A Pan HDAC Investigational 1 0 Limited Not determined

Givinostat Pan HDAC Investigational 3 0 Yes 6,9 [68]

Vorinostat Pan HDAC Marketed 4 1 Yes 1–2 [69]

Abexinostat Pan HDAC Investigational 1 0 Yes 4 [70]

CUDC-101 Pan HDAC, Her, EGFR Investigational 1 0 Not reported 4,4 [71]

Dacinostat Pan HDAC Investigational 2 0 Not reported 6–15 [72]

Mocetinostat Class I selective Investigational 2 0 Yes in mice 7–11 [73]

CUDC-907 Pan HDAC, PI3K Investigational 2 0 < 10% in mice 3 [74]

Resminostat HDAC 1, 3, 6 Investigational 2 0 Not reported 3 [75]

Tacedinaline Class I selective Investigational 3 0 15–45% in monkey 8,5–10 [76]

RG2833 HDAC 1, 3 Investigational 1 0 Yes in mice 6–10 [77]

M344 Pan HDAC Discovery 0 Yes in mice Not determined

Domatinostat Pan HDAC, LSD1 Investigational 1 0 Not reported 20 [78]

Scriptaid Pan HDAC Discovery 0 Not reported Not determined

Rocilinostat HDAC 6 Investigational 2 0 Not reported 3 [79]
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insertion (exposing the value of the monoclonal line used 
in the primary HTS campaign to minimize confound-
ing variables, followed by validation in polyclonal lines 
derived from multiple patients through the easily scalable 
polyclonal format).

Second, we identified HDAC inhibition as a power-
ful and surprisingly specific chromatin intervention for 
rescuing the aberrant transcriptional levels of GTF2I, 
the cardinal gene involved in by 7q11.23 CNV. HDACi 
prevent the deacetylation of histones thereby facilitating 
gene expression. Intensively studied for treatments of dif-
ferent malignancies, from hematological entities to solid 
tumors [38, 39], HDACi have also been probed in mod-
els of neurodegenerative disorders, such as Alzheimer’s 
[40, 41], Parkinson’s [42], Huntington’s diseases [43], and 
diabetic neuropathic pain [44]. Indeed, although previ-
ous studies highlighted a link between HDAC inhibition 
and improvement of social cognition in different mouse 
models of ASD [17, 45, 46], and functional recovery in 
cortical neurons in MECP2 duplication syndrome [47], 
the use of HDACi in 7Dup patients has never been antic-
ipated. Here we identified and confirmed three HDACi 
(vorinostat, mocetinostat and RG2833) that are able to 
reduce GTF2I expression both at a transcription and at 
the protein level in 7Dup iNs. In particular, vorinostat is 
an FDA-approved Pan HDAC inhibitor that crosses the 
BBB [48]; mocetinostat is a class I selective HDACi that 
passes the BBB in mice [49], and RG2833 is a brain-pen-
etrant HDACi with a specificity for HDAC1 and HDAC3 
[50] (Table 1). The common characteristic of these com-
pounds, which grounded our rational for selecting them 
for validation amongst the other HDACs leads emerged 
from the HTS, is the ability to pass the BBB, an obviously 
crucial aspect for neurodevelopmental disorders. Impor-
tantly, at present vorinostat is among four HDACi, along 
with panobinostat, belinostat and depsipeptide (romidep-
sin), that have already received FDA approval for the 
treatment of a number of conditions, including refrac-
tory cutaneous T cell lymphoma, refractory multiple 
myeloma and peripheral T cell lymphoma, respectively 
[51–54]. Besides existing approval, our results provide 
additional support for vorinostat as the most promis-
ing HDACi amongst the ones we identified. Specifically, 
we probed the effect of the three compounds also at the 
protein level, aiming at scoring the best performance on 
two criteria: (1) the narrow range of the effect, i.e. privi-
leging the compound best capable of fine-tuning the level 
of GTF2I, thus avoiding an excessive decrease that might 
spill into the WBS dosage range; and (2) the robustness 
of this fine-tuned effect across different patients. On this 
basis, we observed that the mild effect observed with 
mocetinostat and RG2833 at a protein level appears to be 
patient-dependent, whereas vorinostat emerges clearly as 

the most reliable in reducing the protein levels of GTF2I 
in iNs derived from three different patients. Finally, its 
effect is maintained down to 1 μM, the dose correspond-
ing to the clinically active tolerated relevant concentra-
tion approved for oncology indications [55].

Third, while the effect of HDACi on GTF2I is very 
specific with respect to the other three genes we had 
scored as targets in our screening, it is arguably indi-
rect. This is consistent with the observation, as sum-
marized in Table  1, that the most represented HDACi 
specificities among the compounds we identified are for 
different classes of HDAC: HDAC 1, 3, and 6. HDAC 
1 and 3 are included in class I HDAC, while HDAC 6 
belongs to another class (IIb). Specifically, HDAC 1 
is expressed primarily in neurons and it mainly func-
tions in combination with HDAC2 in several repres-
sor complexes; HDAC3 is the most highly expressed 
class I HDAC in the brain and it is also predominantly 
expressed in neurons, playing an essential role in brain 
development [56]; lastly, HDAC6 is involved in pro-
cesses related to neurodegeneration, binding to ubiqui-
tinated protein aggregates [57].

This diversity of pathways whose inhibition converges 
on GTF2I is not surprising given the observations from 
several studies demonstrating how HDAC inhibitors can 
cause both up- and downregulation of gene expression 
patterns [58–61], pointing to the fact that HDAC inhibi-
tions also alter the expression of additional enzymes or 
co-factors which in turn will act as activators or repres-
sors of other downstream genes.

Finally, the specificity of effect on GTF2I underscores 
the possibility that even in disorders caused by fairly 
large CNV encompassing multiple genes, it is possible 
to identify compounds that, albeit acting through major 
regulatory pathways such as histone deacetylation, end 
up exerting, in the context of patient-derived disease-
relevant cell types, an exquisitely specific effect. For clini-
cal translation this is potentially highly relevant, since 
in multi-gene CNV disorders for which one gene is par-
ticularly critical (as the case of GTF2I for 7q11.23 CNV), 
selective therapies may likely have fewer side effects than 
those modulating the expression of the entire CNV.

Together, our results establish the power of ASD 
patient-specific neurons for drug discovery and/or repo-
sitioning through HTS and identify HDACi, and espe-
cially vorinostat, as particularly promising repurposed 
compounds for 7Dup, whose effects warrant further 
characterization in complementary pre-clinical mod-
els such as patient-derived cortical brain organoids, that 
we characterized recently for their highly reproducible 
attainment of corticogenesis milestones [62], and GTF2I 
CNV murine models [20], that recapitulate in vivo some 
of the salient ASD phenotypes relevant to 7Dup.
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Limitations
Insofar as beyond the scope of the current work, in this 
study we did not address the molecular mechanisms 
whereby HDAC inhibitors act on GTF2I. Consistent 
with the aim of a HTS campaign, the identification of 
lead compounds has been the focus of this study. The 
lead compounds will now be advanced to further test-
ing in additional models, including patient-derived brain 
organoids and mouse models recapitulating the gene 
imbalances of the 7q11.23 microduplication, in order 
to validate their efficacy in rescuing phenotypes across 
multiple functional layers within a translational pipe-
line toward clinical use. This will include a full charac-
terization of the synaptic physiopathology of the two 
conditions.

Conclusions
Drug repositioning has the potential to provide new ther-
apeutic alternatives for patients as well as “new” innova-
tive use for “old” drugs thus delivering relevant clinical 
improvement while reducing their clinical development 
time compared to de novo development of new chemical 
entities.

Considered the unmet medical need in the ASD field, 
our HTS-derived results represent a unique opportunity 
to develop first-in-class therapeutic agents for the 7Dup 
syndrome and possibly other neurodevelopmental con-
ditions and an intriguing prospect to investigate the link 
between HDAC inhibition and GTF2I regulation. Finally, 
effective treatments of 7Dup core symptoms will also 
help to reduce the staggering physical and mental stress 
on patients’ caregivers, along with the financial burden 
involved in managing this disease, conferring a great ben-
efit to the society.
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