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Abstract 

Background: The heterogeneity inherent in autism spectrum disorder (ASD) presents a substantial challenge to 
diagnosis and precision treatment. Heterogeneity across biological etiologies, genetics, neural systems, neurocogni-
tive attributes and clinical subtypes or phenotypes has been observed across individuals with ASD.

Methods: In this study, we aim to investigate the heterogeneity in ASD from a multimodal brain imaging perspec-
tive. The Autism Diagnostic Observation Schedule (ADOS) was used as a reference to guide functional and structural 
MRI fusion. DSM-IV-TR diagnosed Asperger’s disorder (n = 79), pervasive developmental disorder-not otherwise 
specified [PDD-NOS] (n = 58) and Autistic disorder (n = 92) from ABIDE II were used as discovery cohort, and ABIDE I 
(n = 400) was used for replication.

Results: Dorsolateral prefrontal cortex and superior/middle temporal cortex are the primary common functional–
structural covarying cortical brain areas shared among Asperger’s, PDD-NOS and Autistic subgroups. Key differences 
among the three subtypes are negative functional features within subcortical brain areas, including negative puta-
men–parahippocampus fractional amplitude of low-frequency fluctuations (fALFF) unique to the Asperger’s subtype; 
negative fALFF in anterior cingulate cortex unique to PDD-NOS subtype; and negative thalamus–amygdala–caudate 
fALFF unique to the Autistic subtype. Furthermore, each subtype-specific brain pattern is correlated with different 
ADOS subdomains, with social interaction as the common subdomain. The identified subtype-specific patterns are 
only predictive for ASD symptoms manifested in the corresponding subtypes, but not the other subtypes.

Conclusions: Although ASD has a common neural basis with core deficits linked to social interaction, each ASD 
subtype is strongly linked to unique brain systems and subdomain symptoms, which may help to better understand 
the underlying mechanisms of ASD heterogeneity from a multimodal neuroimaging perspective.

Limitations: This study is male based, which cannot be generalized to the female or the general ASD population.

Keywords: Heterogeneity, Autism spectrum disorder, Asperger’s disorder, Pervasive developmental disorder-not 
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Background
Autism spectrum disorder (ASD) represents a broad 
range of pervasive developmental disorders character-
ized by limitations in initiating and sustaining social 
communication and interactions, in addition to the pres-
ence of repetitive behaviors [1]. In the past 50 years, the 
diagnosis of autism has evolved from a narrowly defined 
and rare disorder of early childhood, to a broader spec-
trum disorder representing lifelong challenges–with > 1% 
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of children diagnosed with the disorder, and highly heter-
ogeneous nature, i.e., no two children or adults with ASD 
have the exact same phenotypic profile [2]. Multi-level 
heterogeneity [3] across biological and behavioral attrib-
utes including genetics [4, 5], neural systems [6, 7] and 
clinical phenotypes has been observed in individuals with 
ASD. Individuals with ASD differ across multiple dimen-
sions in their clinical presentation, including: the severity 
of specific behavioral deficits such as in social skills, com-
munication and language ability, age of onset, intellectual 
functioning [8], sex differences [9–12], executive func-
tioning [13] and developmental histories [14, 15]. Thus, 
ASD is frequently conceptualized as an “array of spec-
tra” rather than a single phenotype. Many clinicians and 
researchers still hypothesize that it is comprised of differ-
ent subgroups or multidimensional nodes or subdivisions 
[7, 16, 17] that are thought to have potential etiological 
and treatment value, although these have yet to be clearly 
identified and operationalized. Such remarkable hetero-
geneity across multiple levels of dimensions reflects a 
core challenge underlying the neurobehavioral modeling 
of ASD, or its subtypes.

The heterogeneity inherent in ASD [18] presents a 
substantial challenge for prevention, diagnosis and treat-
ment [19]. Several studies have suggested that a bio-
marker approach which stratifies or partitions the ASD 
population’s variability into neurobehaviorally meaning-
ful subgroups may aid in improving the identification of 
etiologies, early identification, diagnosis and its precision 
treatment, in contrast to a “one-size-fits-all” approach 
[16, 19]. Neuroimaging studies have indicated lower gray 
matter volume (GMV) in prefrontal gyrus and limbic 
striatal as compared to healthy controls [20] in Asper-
ger’s subtype. Instead of categorical subtypes, a recent 
study proposed a continuous interindividual variation in 
ASD yielded three factors with dissociable whole-brain 
hypo- and hyper-resting state functional connectivity in 
default mode network [17]. Another study classified ASD 
into three distinctive anatomical subtypes (ASD-I: cor-
tical thickening, increased surface area, tissue blurring; 
ASD-II: cortical thinning, decreased distance; ASD-III: 
increased distance) based on cortex-wide MRI mark-
ers [7]. However, they are both focusing on defining 
new ASD subtypes by classifying neuroimaging features 
into different clusters [21]. Here, we provide a different 
view regarding ASD subtypes by changing from defining 
new subtypes to directly compare the exiting subtypes 
in ABIDE data based on DSM-IV diagnostic system to 
investigate whether there are the commonality and dif-
ferences among three subtypes. Although many neuro-
imaging studies have investigated ASD heterogeneity 
across sex, age and intelligence levels [10, 16], few have 
investigated ASD heterogeneity from a multimodal brain 

imaging perspective [22, 23]. In this study, we hypoth-
esize that the heterogeneity of behavioral symptom 
severity, assessed via the Autism Diagnostic Observation 
Schedule (ADOS) [24], will provide another window into 
the heterogeneous, abnormal multimodal covarying pat-
terns in individuals with ASD, and potentially allow for a 
comparison of similarities and distinctions among its tra-
ditional subtypes.

Although the concept of subtyping in ASD has long 
been utilized and has generated considerable contro-
versy [25, 26], the neurobiological basis and the mecha-
nisms underlying brain heterogeneity of potential ASD 
subtypes remain poorly understood. It is not currently 
clear whether ASD has a common core neural basis, or 
whether the disorder differentially affects various brain 
systems leading to individual differences related to the 
unique amalgam of deficits in abnormal social behavior, 
impaired communication and stereotypical behaviors, 
or some combination of a common core along with dif-
ferential neural subsystem deficits, which might be sug-
gestive of neurobehavioral substrates/subtypes. In order 
to identify such stratification or dimensional biomarkers 
in ASD, we change the approach from the case–control 
model to a stratified and dimensional model which better 
model the multidimensional neural and related behavio-
ral attributes that could yield much higher impact, larger 
effects and result in the identification of core and unique 
neural behavioral substrates [27].

In this study, multimodal [28] brain imaging data from 
the Autism Brain Imaging Data Exchange (ABIDE) [29, 
30] were used as the discovery (ABIDE II) and replica-
tion (ABIDE I) cohorts. Cumulating evidence has dem-
onstrated that ASD reflects fundamental differences in 
both brain structure and function [31–33], while frac-
tional amplitude of low-frequency fluctuations (fALFF) 
and GMV are two representative measures of (functional 
magnetic resonance imaging) fMRI and (structural MRI) 
sMRI. FALFF can directly provide information of the 
amplitude of brain activity of each brain region within 
a network, i.e., reveals the BOLD signals change of the 
regional spontaneous activity [34], which is widely used 
for characterizing local spontaneous activity of rest-
ing state fMRI data. Studies show that ASD exhibited 
reduced fALFF in the right middle occipital gyrus, lingual 
gyrus and fusiform gyrus [33]. And further spatial over-
lap analyses confirmed that the spatial pattern of reduced 
fALFF substantially overlapped with that of local under-
connectivity [33]. ADOS scores were used as a reference 
to guide a 2-way fALFF-GMV fusion [35] to identify mul-
timodal brain networks that were associated with the 
overall ADOS scores. For this investigation, we focused 
on four goals: (1) to identify multimodal brain networks 
associated with overall ADOS scores within ASD and 
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among its subtypes (Asperger’s, pervasive developmen-
tal disorder-not otherwise specified [PDD-NOS] and 
Autistic); (2) to assess group differences between ASD/
subtypes and typically developing controls (TDC) of 
these identified networks; (3) to identify the common 
and unique multimodal neurobehavioral attributes iden-
tified among the Asperger’s, PDD-NOS and Autistic 
subgroups; and (4) to evaluate the predictability of the 
identified brain networks in predicting ADOS and Social 
Responsiveness Scale (SRS) total scores in an independ-
ent sample (ABIDE I).

Methods and materials
Participants
Subjects with ASD (n = 229) and the corresponding 
TDCs (n = 126) were selected from the ABIDE II [29, 
30], which is hosted by the 1000 Functional Connectome 
Project/International Neuroimaging Data-sharing Ini-
tiative (INDI) from multiple international sites (9 sites, 
Additional file  1: Table  S1). Inclusion as a participant 
with ASD required a clinician’s DSM-IV-TR diagnosis 
of Autistic disorder, Asperger’s disorder or PDD-NOS. 
Each site followed slightly different methods for diagnos-
ing patients with autism or ascertaining typical devel-
opment; however, most of the sites used the ADOS and 
Autism Diagnostic Interview-Revised (ADI-R) scores to 
diagnose ASD. Specific diagnostic criteria for each site 

can be found at https://fcon_1000.projects.nitrc.org/
indi/abide/. ADOS score is considered the “gold stand-
ard” for assessing Autistic children [36, 37] and is a semi-
structured interactive evaluation of ASD symptoms that 
is used to measure social and communication abilities by 
eliciting several opportunities (or “presses”) for observing 
spontaneous behaviors (e.g., eye contact) in standardized 
context. The SRS, another valid quantitative measure of 
Autistic traits, was designed primarily to assess social 
reciprocity deficits. The ADOS total symptom scores 
were summed over “Communication,” “Reciprocal Social 
Interaction” and “Stereotyped Behaviors and Restricted 
Interests” based on the scores of the algorithm items of 
ADOS-G, in ways representing a severity dimension of 
key behavioral attributes. TDC were selected from the 
same ASD acquisition sites. Within the current merged 
ASD sample, there were Asperger’s (n = 79), PDD-NOS 
(n = 58) and Autistic (n = 92) diagnosed subjects from the 
ABIDE II database. Selection criteria for these ABIDE II 
subjects also required them to be younger than 35 years 
of age and males only (due to the low number of female 
with ASD) [38]. Basic demographic, symptomatic scores 
and medication use of participants are summarized in 
Table 1.

The same ASD selection criteria were used for inclu-
sion in the cross-validation ABIDE I (17 sites, Addi-
tional file 1: Table S1) dataset, which included Asperger’s 

Table 1 Demographic and clinical information of participants

ANOVA column presents the p values for ANOVA test among Asperger’s, PDD-NOS and Autistic subgroups. For handedness (categorical measures), Chi-square was 
applied

FD framewise displacements, Intelligence full scale IQ

ASD Asperger’s PDD-NOS Autistic ANOVA

ABIDE II

 Sample size n = 229 n = 79 n = 58 n = 92 Na

 Age (mean ± std) 10.0 ± 4.2 16.3 ± 6.4 8.3 ± 2.5 12.2 ± 3.8 7.0e−19

 Handedness (R/L/M) 178/18/33 67/7/5 36/4/18 75/7/10 0.04

 Intelligence (mean ± std) 106.3 ± 18.1 110.4 ± 15.6 104.4 ± 17.5 103.8 ± 20.0 0.04

 Mean FD (mean ± std) 0.4 ± 0.2 0.1 ± 0.2 0.1 ± 0.2 0.5 ± 0.1 0.4

 ADOS (mean ± std) 12.3 ± 4.9 10.1 ± 4.0 12.6 ± 4.6 14.1 ± 5.0 7.2e−06

 SRS (mean ± std) 86.8 ± 29.7 81.5 ± 26.5 88.1 ± 29.4 92.0 ± 32.9 0.1

 Number on medication 35 0 0 35 Na

ABIDE I

 Sample size n = 400 n = 73 n = 28 n = 299 Na

 Age (mean ± std) 16.2 ± 6.2 16.1 ± 7.2 16.0 ± 6.7 16.2 ± 5.9 0.97

 Handedness 230/28/144 47/4/22 16/4/8 167/20/112 0.36

 Intelligence (mean ± std) 104.2 ± 16.7 112.6 ± 15.8 100.2 ± 23.1 102.5 ± 15.6 1.3e−05

 Mean FD (mean ± std) 0.16 ± 0.2 0.2 ± 0.2 0.1 ± 0.07 0.2 ± 0.2 0.3

 ADOS (mean ± std) 14.0 ± 4.7 12.2 ± 4.2 9.4 ± 3.3 14.5 ± 4.7 0.003

 SRS (mean ± std) 90.6 ± 30.4 82.5 ± 20.5 90.1 ± 28.8 92.0 ± 31.9 0.4

 Number on medication 83 0 0 83 Na
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(n = 73), PDD-NOS (n = 28) and Autistic (n = 299) diag-
nosed subjects. ABIDE II was selected as the discovery 
cohort due to its comparable sample size among the 
three subgroups as well as the small site number (9 vs. 
17), comparing ABIDE I (replication cohort). There is 
no significant correlation between the referenced ADOS 
scores with age, handedness, mean framewise displace-
ments (FD) and SRS (Additional file  1: Table  S2). The 
group differences between ASD and TDC, and between 
subtypes and TDC on key clinical measures are provided 
in Additional file 1: Table S3–S4.

Multimodal imaging preprocessing
Multimodal brain imaging of resting-state fMRI and 
sMRI was available from each participant who met inclu-
sion criteria. Detailed image acquisition parameters can 
be found in the ABIDE website https://fcon_1000.pro-
jects.nitrc.org/indi/abide/abide_I.html for ABIDE I and 
https://.fcon_1000.projects.nitrc.org/indi/abide/abide_
II.html for ABIDE II.

The fMRI data were preprocessed using statistical para-
metric mapping (SPM12, https ://www.fil.ion.ucl.ac.uk/
spm/) in the MATLAB 2019 environment. We performed 
rigid body motion correction using SPM to correct sub-
ject head motion, followed by the slice-timing correction 
to account for timing difference in slice acquisition. The 
fMRI data were subsequently warped into the standard 
Montreal Neurological Institute (MNI) space using an 
echo planar imaging (EPI) template and were resampled 
to 3 × 3 × 3  mm3 isotropic voxels. The resampled fMRI 
images were further smoothed using a Gaussian kernel 
with a full width at half maximum (FWHM) = 6  mm. 
Then for each voxel, six rigid body head motion param-
eters, white matter (WM) signals, and cerebrospinal fluid 
(CSF) signals were regressed out using linear regression. 
Finally, to calculate fALFF [34], the sum of the spectral 
amplitude values in the 0.01–0.08  Hz low-frequency 
power range was divided by the sum of the amplitudes 
over the entire detectable power spectrum (range: 
0–0.25 Hz). Regarding head motion, we removed outlier 
datasets with mean FD exceeding 1 mm, as well as head 
motion exceeding 2.0 mm of maximal translation (in any 
direction of x, y or z) or 1.0° of maximal rotation through-
out the course of scanning. There is no group difference 
of mean FD among Asperger’s, PDD-NOS and Autis-
tic (Table 1) as well as between TDC group (Additional 
file  1: Table  S3–S4). Furthermore, the fusion analysis 
was conducted on the spatial maps of fALFF, but not the 
functional connectivity related feature, which is affected 
by head motion. Considering that no group differences 
exist on (micro) head motions during fMRI preprocess-
ing, we believe micro-motion such as FD is not a major 
factor affecting the current results.

The structural data T1 images were preprocessed 
through an automated pipeline. Tissue classification, bias 
correction, image registration and spatial normalization 
were automatically performed using voxel-based morpho-
metry in SPM12, wherein the above steps are integrated 
into a unified model [39]. Modulated GM segmentations, 
which produce an estimation of GMV, were then smoothed 
using a Gaussian kernel with a width of 6 mm.

Next, each modality was reshaped into a feature matrix 
with columns representing voxels and rows represent-
ing subjects. Since there were group differences among 
Asperger’s, PDD-NOS and Autistic subgroups in age, 
handedness and intelligence (Table  1), we regressed out 
age, handedness, intelligence (full scale IQ) and acquisition 
site from fALFF and GM data prior to the fusion analysis. 
Finally, the obtained feature matrices were normalized to 
have the same average sum of squares (computed across 
all subjects and all voxels for each modality) to ensure all 
modalities had the same range of values.

Study design
According to the four goals stated in the introduction, we 
performed a systematic, data-driven analysis as designed 
in Fig. 1. Specifically, (1) ADOS composite scores for indi-
viduals with ASD were used as a reference to guide a two-
way MRI (fALFF + GMV) fusion analysis for the whole 
ASD (Fig. 1a) sample, and then for each subtype that within 
it [Asperger’s (Fig.  1b), PDD-NOS (Fig.  1c) and Autistic 
(Fig. 1d)]; (2) back-reconstruction was performed to verify 
whether there are group differences between ASD/sub-
types and TDCs, of the identified multimodal components; 
(3) common and unique multimodal brain networks were 
identified; and (4) multivariate linear regression was per-
formed to cross-validate the predictability of the identified 
multimodal features in predicting ADOS and SRS scores of 
ASD and subtypes in an independent sample (ABIDE I).

Specifically, the preprocessed multimodal MRI features 
were jointly analyzed by a fusion-with-reference model 
called “MCCAR + jICA” (https ://trend scent er.org/softw 
are/fit/, multi-site canonical correlation analysis with ref-
erence + joint independent component analysis) [40], a 
data-driven analysis for identifying targeted brain regions 
associated with the overall ADOS scores. Assume that 
there are n multimodal datasets Xk , and each is a lin-
ear mixture of components Sk with a nonsingular mixing 
matrix Ak . k = 1, 2, . . . , n , denotes the modality. Thus,

where Xk is a subjects-by-voxels feature matrix and Ak is 
in the dimension of subjects by number of components 
M. Loadings in mixing matrix ( Ak ,m , m represents the 
mth column of Ak ) represent the contribution weight 
for each subject in the corresponding component ( Sm,k , 

(1)Xk = AkSk

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://trendscenter.org/software/fit/
https://trendscenter.org/software/fit/
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m represents the mth row of Sk ). In supervised fusion, 
MCCAR + jICA imposes an additional constraint to 
maximize not only the covariations among mixing matri-
ces of each modality, but also the column-wise correla-
tions between Ak and the reference signal, as shown in 
Eq. (2).

where ref  is an N × 1 vector, denoting the interested 
clinical measure (i.e., ADOS), N  represents number of 
subjects. Comparing with unsupervised multimodal 
fusion methods, e.g., MCCA, jICA, MCCAR + jICA is 
more goal-directed [41] by taking advantage of a prior 
(interested clinical measure, ADOS) to guide the fusion 
analysis. Thus, it can simultaneously maximize the inter-
modality covariation and correlations of certain imaging 
components with ADOS. After optimization of Eq.  (2), 
we can obtain the potential target components Si that are 
correlated with ADOS in each modality. Therefore, by 
incorporating prior information, MCCAR + jICA enables 
identification of a joint multimodal component(s) that 

(2)max

2∑

k ,j=1

{
corr

(
Ak ,Aj

)2
2
+ 2� · corr(Ak , ref)

2
2

}

has robust correlations with referred measures (ADOS), 
which may not be detected by a blind N-way multimodal 
fusion approaches [42]. Subject-wise total ADOS scores 
were used as a reference to jointly decompose fALFF 
and GM volume to investigate ADOS-associated fALFF-
GM covarying multimodal patterns for all ASD and its 
subtypes. As a result, a joint multimodal component(s) 
which correlated with total ADOS scores are identified. 
To generate comparable components among ASD and its 
three subgroups, we used the same component number 
(IC = 30) for ASD and each of the three subtypes’ fusion 
analysis. To establish whether there is group difference 
of the identified multimodal patterns between patients 
and TDCs, back-reconstruction of ASD/subtype-related 
brain maps to the TDCs was performed based on the lin-
ear projection model as in Eq. (3).

where SASD,k and AASD,k denote the brain compo-
nents and the corresponding mixing matrix derived by 
MCCAR + jICA for the whole ASD group. XASD,k and 

(3)
XASD,k = AASD,k × SASD,k

ATDC,k = XTDC,k ×
(
SASD,k

)−1
k = 1, 2

Fig. 1 Flowchart of the study design. ADOS composite scores were used as a reference to guide a two-way fALFF-GM fusion for (a, orange) the 
whole ASD group and then the ASD subgroups [(b, blue) Asperger’s, (c, green) PDD-NOS and (d, red) Autistic] to identify ASD and subtype-related 
multimodal brain networks associated with ADOS. Then, the identified brain maps were back-reconstructed (BR) on the same control group 
(TDC). Finally, the identified multimodal patterns were used to train symptom prediction models in each subtype using the ABIDE II data and then 
cross-validated using the ABIDE I data
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XTDC,k represent preprocessed imaging feature matrixes 
for ASD and TDC groups separately, and k represents the 
modality. The spatial maps of ASD ( SASD,k ) were used to 
estimate the mixing matrix of the control group ( ATDC,k ) 
based on Eq. (3). The same back-reconstruction was per-
formed on ASD and its subtypes separately. Finally, the 
identified multimodal patterns were used to train symp-
tom prediction models in each subtype using the ABIDE 
II data and then cross-validated using the ABIDE I data.

Results
ASD-related multimodal patterns
ASD-related joint components were identified (Fig.  2), 
which correlated with total ADOS scores (fALFF: 
r = 0.41, p = 5.3e−08; GM: r = 0.35, p = 4.6e−06), which 
are false discovery rate correction (FDR) corrected. The 
positive/negative brain regions (red/blue) indicate posi-
tive/negative correlation with ADOS scores in fALFF or 

GMV. ASD-related multimodal patterns include positive 
brain fALFF in dorsolateral prefrontal cortex (DLPFC, 
BA9 and BA46, including the superior/middle frontal 
gyrus), inferior frontal gyrus (Broca’s area, BA45), supe-
rior/middle temporal gyrus (SM_TG), insula, lingual 
gyrus and angular gyrus, and negative fALFF in thalamus 
and caudate, accompanied with positive GM volume in 
DLPFC, SM_TG, superior/inferior parietal lobule, angu-
lar gyrus, lingual gyrus, fusiform gyrus, insula and amyg-
dala, as summarized in Additional file 1: Table S5.

Subtype-related multimodal patterns
Asperger’s, PDD-NOS and Autistic-related joint compo-
nents were also identified (Additional file 1: Fig S1–S3). 
The identified brain regions are summarized in Addi-
tional file  1: Table  S6–S8 for fALFF and GM (Talairach 
labels), respectively. For the subgroup diagnosed as 
Asperger’s, ADOS scores are positively correlated with 

Fig. 2 The identified ADOS-associated joint component in ASD. a The spatial maps are visualized at |Z|> 2 thresholds, where the red regions mean 
positive fALFF or GMV, and the blue areas indicate negative fALFF or GMV. b Correlation between loadings of the identified components and ADOS. 
*Signifies FDR corrected. c Group differences between ASD and TDC of the loading parameters
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brain fALFF in DLPFC, SM_TG, superior/inferior pari-
etal cortex and angular gyrus, and negatively associated 
with fALFF in fusiform gyrus, lingual gyrus, putamen and 
parahippocampus, accompanied with positive GM vol-
ume in DLPFC, SM_TG, inferior parietal cortex, insula 
and angular gyrus. For PDD-NOS, ADOS scores are pos-
itively associated with brain fALFF in DLPFC, SM_TG, 
superior/inferior parietal cortex, angular gyrus, lingual 
gyrus and fusiform, and negatively related with fALFF 
in anterior cingulate cortex (ACC) and caudate, accom-
panied by positive GM volume in DLPFC, ST_TG, Bro-
ca’s area, lingual gyrus and fusiform. For autistic group, 
ADOS scores are positively associated with higher fALFF 
in DLPFC, SM_TG, inferior parietal cortex, angular 
gyrus, and lingual and negatively correlated with fALFF 
in caudate, thalamus and amygdala, accompanied with 
positive GM volume in DLPFC, ST_TG, Broca’s area, 
superior/inferior parietal cortex, angular gyrus, fusiform 
and lingual cortex. The partial correlations between sub-
type components and ADOS remain significant even 

after regressing out FD (Additional file 1: Table S9), site 
and TR (Additional file 1: Table S10).

Group difference between ASD/subtype and TDCs
The identified ASD and subtype-specific components 
preserve group differences between ASD and controls, 
and between each subtype and controls (Fig.  2c and 
Additional file  1: Fig S1c–S3c). These group differences 
remain significant even after FIQ, age and handedness 
were regressed out (Additional file 1: Table S11).

Common and unique patterns among three subtypes
Subtype-specific multimodal patterns on the same 
slices among the Asperger’s, PDD-NOS and Autistic 
subgroups were compared to the overall ASD mul-
timodal patterns (Fig.  3). Positive fALFF in DLPFC 
and SM_TG accompanied with positive GM volume 
in DLPFC and SM_TG were the common functional–
structural covaried patterns seen in ASD and also 
among Asperger’s, PDD-NOS and Autistic subtypes. 

Fig. 3 Comparison of multimodal patterns (the same slices) among a the whole ASD (n = 229), b Asperger’s (n = 79), c PDD-NOS (n = 58) and d 
Autistic (n = 92) subgroups. Each subtype-related patterns are correlated with ADOS (details can be found in Additional file 1: Fig. S1–S3)
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These are the shared core multimodal attributes. In 
contrast, the main differences when comparing among 
subtypes are negative functional subcortices. Spe-
cifically, negative subcortical brain fALFF, including 
putamen and parahippocampus, are unique for the 
Asperger’s subtype; negative fALFF in ACC is unique 
for the PDD-NOS subtype; and negative amygdala, 
caudate and thalamus are unique to the Autistic sub-
type. Moreover, when comparing fALFF and GM pat-
terns, we found that GMV increase is more consistent 
than fALFF abnormalities over the three subgroups, 
where only subtle differences exist. For example, 
although positive GMV in the insular cortex was iden-
tified for all the three subtypes, they occur in differ-

ent parts of the insula (anterior insula for Autistic and 
PDD-NOS; middle insula for Asperger’s).

Different associations with ADOS subdomains
We also assessed the correlation between the identi-
fied subtype-related multimodal brain networks with 
subdomain scores of the ADOS (Table 2). Results show 
that Asperger’s-related neural pattern is associated 
with scores from the ADOS social interaction subdo-
main only, as might be expected based on this diag-
nostic subtype’s diagnostic criteria. PDD-NOS-related 
pattern is correlated with both social communication 
and social interaction subdomains, while Autistic neu-
ral patterns are correlated with all three subdomains 
(social communication, social interaction and stereo-
typed behaviors). Social interaction is the common 
subdomain that associates with the Asperger’s, PDD-
NOS and Autistic brain components. As for age and 
motion, we found that the identified subtype-related 

patterns were uncorrelated with neither age nor mean 
FD (Additional file 1: Table S12).

Cross-cohort prediction
To verify the predictability [43, 44] of these specific mul-
timodal brain features identified within ASD and the 
subtypes, the extracted ROIs (positive and negative brain 
networks in fMRI_IC, and positive brain networks in 
sMRI_IC, details can be found in Supplementary “Predic-
tive feature extraction” section) were used as regressors 
to predict multiple symptom scores (ADOS and SRS) 
using an independent sample (ABIDE I) for cross-vali-
dation. Based on the following Eq.  (4), a multiple linear 
regression model was trained on ABIDE II.

The predictive accuracy is measured by the correla-
tion between the estimated cognitive scores and its true 
values, as well as the normalized root mean squared pre-
diction error (NRMSE). The NRMSE is a frequently used 
measure of the differences between values predicted by 
a model or an estimator and the values observed. The 
RMSE of predicted values ỹn for subject n of a regres-
sion’s dependent variable yn with variables observed over 
N subjects, is computed for N different predictions as the 
square root of the mean of the squares of the deviations:

The 3-dimensional features were predictable for ADOS 
and SRS (SRS was not correlated with ADOS, r = 0.07, 
p = 0.4) scores for ABIDE II and the same prediction 

(4)Symptom scores = β0 + fMRI_positive× β1 + fMRI_negative× β2 + sMRI× β3

(5)RMSE =
2

√∑N
n=1

(
ỹn − yn

)2

N

(6)NRMSE =
RMSE

ymax − ymin

Table 2 Correlation between subtype-related components with subdomains of ADOS

*Signifies FDR correction for multiple comparisons

Social communication Social interaction Stereotyped behaviors 
and restricted interest

Asperger’s

 fMRI_IC r = 0.30, p = 0.02 r = 0.46, p = 1.2e−04* r = 0.38, p = 0.002

 sMRI_IC r = 0.27, p = 0.03 r = 0.57, p = 8.1e−07* r = 0.40, p = 0.001

PDD-NOS

 fMRI_IC r = 0.70, p = 6.0e−05* r = 0.72, p = 2.3e−05* r = 0.16, p = 0.44

 sMRI_IC r = 0.84, p = 3.9e−08* r = 0.83, p = 6.2e−08* r = 0.22, p = 0.27

Autistic

 fMRI_IC r = 0.43, p = 1.6e−04* r = 0.41, p = 3.4e-04* r = 0.41, p = 3.2e-04*

 sMRI_IC r = 0.36, p = 0.002 r = 0.46, p = 3.5e-05* r = 0.32, p = 0.006
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models can be generalized to predict ADOS and SRS 
scores for the corresponding subgroup from ABIDE I, 
but not for the other groups (Figs. 4, 5).

Reproducibility across sites
There are studies showing that the ASD case–control 
differences of resting state functional connectivity were 
inconsistent across sites regardless of choice of denoising 
strategies [45]. However, our current study changes from 
the case–control model to an ASD subtype dimensional 
model, and we used fALFF but not the functional con-
nectivity in the fusion analysis. To show the reproduc-
ibility, we used two different ways to discuss replication 
across sites. The first one is that we performed leave-one-
site-out analysis (details can be found in Additional file 1: 
“Reproducibility” section) in the ADOS-guided fALFF 

and GMV fusion on the whole ASD group to check 
whether the site effect will contribute to current ASD 
pattern. Here, we present the most frequently occurring 
voxels (those which occur more than 70% of sites, i.e., 
6 sites among 9) associated with ADOS among these 9 
repeated leave-one-site-out analysis, as shown in Addi-
tional file 1: Fig. S4b. Note that the overlapped model of 
spatial patterns is highly similar with the ASD pattern (all 
sites included). This result shows that the altered covary-
ing patterns of fALFF-GMV of DLPFC, superior–middle 
temporal gyrus and insula in ASD group are consistent 
across 70% sites in ABIDE II.

The second one is that we performed linear projection 
(details can be found in Additional file  1: “Reproduci-
bility” section) of the identified subtype-related compo-
nents from ABIDE II to the corresponding subgroups 

Fig. 4 Prediction analysis on ADOS scores. The identified ASD (a), Asperger’s (b), PDD-NOS (c) and Autistic (d)-related brain areas (positive and 
negative brain networks in fALFF plus positive brain areas in GM, 3-dimensional features) were used as features to train a multiple linear regression 
model in ABIDE II cohort. Then, the brain areas and the prediction models were generalized to predict the corresponding groups’ ADOS and SRS 
scores in an independent ABIDE I cohort. Arrows (orange, blue, green and red represent ASD, Asperger’s, PDD-NOS and Autistic groups, respectively) 
mean the features are predictive for the corresponding group. “  = ” denotes the features from this subgroup are not predictable for the other two 
subgroups



Page 10 of 15Qi et al. Molecular Autism           (2020) 11:90 

in ABIDE I. Results (Additional file 1: Table S13) show 
that the linkage between subtype-related components 
and ADOS detected in ABIDE II can be replicated in 
ABIDE I age-matched cohort. Considering (1) site was 
regressed out from fALFF and GMV prior to fusion 
analysis; (2) partial correlations between subtype’s com-
ponents and ADOS remain significant after regressing 
out site (Additional file 1: Table S10); (3) the most fre-
quently occurring voxels (those which occur more than 
70% across sites) are similar with the original ASD pat-
tern (Additional file 1: Fig. S4); (4) the linkage between 
subtype components and ADOS by projecting from 
ABIDE II to ABIDE I remains significant (Additional 
file 1: Table S13); we conclude that the site effect would 
not be a main factor affecting the current results.

Discussion
This study makes key contributions to the understand-
ing of brain imaging heterogeneity in ASD by identify-
ing both common and unique patterns from multimodal 
imaging perspectives. As summarized in Fig.  6, our 
investigation demonstrated the following results. First, 
DLPFC and SM_TG are common functional–structural 
covarying cortical brain areas shared among ASD and its 
subgroups. The main differences comparing Asperger’s, 
PDD-NOS and Autistic are primarily the negative func-
tional subcortical brain areas. Second, each subtype-
related pattern is correlated differentially with ADOS 
subdomains, with social interaction as the common sub-
domain. Third, these subtype-related features can only 
predict the corresponding subgroups, but not the others.

Fig. 5 Prediction analysis on SRS scores. The identified ASD (a), Asperger’s (b), PDD-NOS (c) and Autistic (d)-related brain areas (positive and 
negative brain networks in fALFF plus positive brain areas in GM, 3-dimensional features) were used as features to train a multiple linear regression 
model in ABIDE II cohort. Then, the brain areas and the prediction models were generalized to predict the corresponding groups’ ADOS and SRS 
scores in an independent ABIDE I cohort. Arrows (orange, blue, green and red represent ASD, Asperger’s, PDD-NOS and Autistic groups, respectively) 
mean the features are predictive for the corresponding group. “  = ” denotes the features from this subgroup are not predictable for the other two 
subgroups
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A major finding is the identification of the shared 
fALFF and GM covaried patterns within the ASD sample 
and its subgroups, suggestive of core ASD neural–behav-
ioral characteristics across ASD severity dimension. The 
identified alterations in DLPFC and SM_TG are the most 
consistent findings related to many of the behavioral defi-
cits observed in individuals with ASD, such as receptive 
language, social cognition,  joint attention, action obser-
vation and empathy [10, 46]. DLPFC and SM_TG are 
also regions where the strongest case–control differences 
between ASD and TDCs are observed [10]. Fusiform, 
which is reported to be related with impaired process-
ing of faces in ASD [47, 48], is also the common brain 
area for ASD and its subtypes, but different subtypes 
are related with different modalities. These common 
brain areas would appear to partly support the concep-
tual merger of these DSM-IV subtypes into the DSM-5 

ASD framework. Note that the identified common mul-
timodal cortical brain regions across all subtypes are 
heavily involved in social and communication-related 
brain regions [49, 50]. Broca’s area dysfunction, which is 
involved in the production and expression of language, 
was identified for Autistic and PDD-NOS subgroups, but 
not for Asperger’s. This is consistent with the traditional 
concept that the Asperger’s subtype is differentiated from 
the other subgroups based on their more intact oral lan-
guage capabilities.

Outside of the core neural–behavioral characteristics 
shared by all subgroups, the main differences when com-
paring Asperger’s, PDD-NOS and Autistic subgroups 
are primarily within functional subcortical brain areas, 
including negative putamen–parahippocampus unique 
to Asperger’s; negative ACC unique to PDD-NOS and 
negative thalamus–amygdala–caudate unique to the 

Fig. 6 Summary on ASD and its subtypes related fALFF-GM covarying patterns: ASD (a orange), Asperger’s (b blue), PDD-NOS (c green) and 
Autistic (d red). The DLPFC and SM_TG are the common functional–structural covarying cortical brain areas among ASD and its related Asperger’s, 
PDD-NOS and Autistic subgroups. Fusiform and lingual gyrus are also the common brain areas for the three subtypes, but with different modalities. 
The main differences comparing Asperger’s, PDD-NOS and Autistic are the negative functional subcortical brain areas, including negative 
putamen–parahippocampus that is unique to Asperger’s subgroup; negative ACC that is unique to PDD-NOS subgroup and negative thalamus–
amygdala–caudate that is unique to the Autistic subgroup. Broca’s area was identified for Autistic and PDD-NOS subgroups, but not for Asperger’s. 
Each subtype-related pattern is correlated differentially with ADOS subdomains, and these features only predict the corresponding groups but not 
others. Arrows in the right column mean the features are predictive for the corresponding subgroup. “  = ” denotes the features from this subgroup 
are not predictable for the other two subgroups. DLPFC is dorsolateral prefrontal cortex; SM_TG is superior and middle temporal gyrus; THA is 
thalamus; AMY is amygdala; CAU is caudate; FUS is fusiform; PAR is parahippocampus; PUT is putamen; ACC is anterior cingulate cortex
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Autistic subgroup. These results highlight the very dif-
ferent negative fALFF functioning differentiating ASD 
subgroups with almost no overlap of their unique local-
ized findings of fMRI measure. These unique differences 
in fMRI functioning may underlie different mechanisms 
and the known levels of severity among ASD subgroups. 
Dysfunction of putamen found in high-functioning 
adults with ASD [51] and decreased inter- and intra-
hemispheric functional connectivity density in parahip-
pocampus [52] may underlie the pathologies of ASD. An 
animal study has shown that ACC (identified in Autistic 
and PDD-NOS subgroups in our results) has a role in the 
regulation of social behavior in mice and indicates that 
ACC dysfunction may be involved in social impairments 
in ASD [53]. Note that ACC in fALFF was neutralized 
in the whole ASD sample due to the negative fALFF in 
PDD-NOS and positive fALFF findings in Autistic sub-
type, which implies that different functions of ACC may 
play in PDD-NOS and Autistic subtypes. The Autistic 
subtype and the whole ASD sample both showed thala-
mus–amygdala–caudate findings, which may relate with 
the stereotyped behaviors and restricted interest in 
Autistic subtypes (Table 2). This is consistent with find-
ings that the Autistic subtype has been shown to have 
the highest levels of concordance when diagnosed using 
either the DSM-IV or DSM-5 systems [54].

Another interesting finding is that each subtype’s 
unique multimodal patterns are correlated differently 
with different ADOS subdomains, with the expectation 
that the social interaction subdomain is the common dys-
function across the three subtypes. This is also consist-
ent with the known core diagnostic criteria of deficits in 
social interaction in each subtype. Asperger’s is primarily 
associated with difficulties in the social communication 
domain, consistent with this subtypes primary defining 
attributes; PDD-NOS showed a pattern associated with 
difficulties in the social communication and interaction 
domains, generally somewhat consistent with its tradi-
tional attributes, although they can have some atypical/
stereotype behaviors at times; while the Autistic subtype-
related patterns were associated with difficulties across 
all the three ADOS subdomains, consistent with hav-
ing the most severe combination of ASD attributes, and 
frequently the most severe combination of all the ASD 
attributes.

The DSM-5 conceptually combined the earlier DSM-IV 
diagnostic subtypes (Asperger’s, PDD-NOS and Autistic 
disorder) into a broader and more heterogeneous disor-
der of ASD. This was due to the historically poor reliabil-
ity in how subtypes were diagnosed in individuals across 
raters, and their questionable validity, but it still empha-
sized that ASD can range from very mild to more severe 
symptomatology, consistent with our sample and results. 

So although the DSM-5 provides for the diagnosis of 
ASD in those patients who had been diagnosed previ-
ously using the DSM-IV and given a diagnosis of Autis-
tic, Asperger’s or PDD-NOS, research that has studied 
the two system’s diagnostic concordance suggests good 
overlap for the Autistic subtype and ASD, but lower for 
the PDD-NOS and Asperger’s subtypes [54]. Given that 
the current ASD samples were derived by merging these 
subtype samples, originally diagnosed using the DSM-IV 
criteria, we were not able to independently re-diagnose 
them nor validate them using the current DSM-5 criteria. 
We expect there to be a number of cases in these subtype 
samples who may not currently meet the revised DSM-5 
ASD criteria, thus adding noise to our comparisons. At 
the same time, we cross-validated these results across 
an independent sample, adding to their generalizability 
strength to these findings. We believe that these findings 
can add to the debates regarding the differences between 
these different diagnostic frameworks and their under-
lying conceptualizations. This is particularly due to the 
findings of both common and distinctive subtype-specific 
areas of functional–structural dysfunction that corre-
lated with the common and sometimes unique behavio-
ral attributes of ASD and its historical subtypes. Thus, we 
emphasize that there are both common (consistent with 
the DSM-5 ASD conceptualization) and possibly unique 
(consistent with the DSM-IV subtype conceptualization) 
findings of functional–structural dysfunction among 
Asperger’s, PDD-NOS and Autistic disorder.

Limitations
A potential limitation is that the ABIDE data were col-
lected from multiple sites. The lack of standardization 
across MRI acquisitions, inclusion criteria, TR, eyes-
open vs. eyes-closed status and clinical assessments 
should be considered. For example, the eyes-open status 
(eyes-open percentages are 86%, 97%, 100% for Asper-
ger’s, PDD-NOS and Autistic, respectively) would con-
found the current findings, introducing the regional 
differences at lingual and fusiform areas between Asper-
ger’s and PDD-NOS. However, it can also be considered 
as an advantage, given that even with this level of het-
erogeneity in the diagnostic and imaging methods, the 
prediction models can be generalized from ABIDE II to 
ABIDE I on both ADOS and SRS scores. Another limita-
tion is that this male-based sample cannot be generalized 
to female ASD population. Note that there is a slight dif-
ference in the distribution of ADOS items across subdo-
mains used to generate the total ADOS symptom scores 
despite equal maximal total scores across four modules 
of the ADOS. However, the majority of the data in these 
total ADOS scores (97% for ABIDE II and 99% for ABIDE 
I) of ASD subjects were based on ADOS-G modules 3 
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or 4, which have the same number of items across the 3 
different domains. Although this study used static brain 
function (fALFF) approaches, dynamic functional net-
work connectivity matrices [55, 56] can also be used to 
capture both temporal and spatial co-alterations in a 
future study, which could provide an even richer under-
standing of both the core and unique aspects of ASD on 
temporal perspective. Such an analysis pipeline could 
also be directly applied to study additional populations 
of interest which also show significant heterogeneity and 
diagnostic debated (i.e. mild cognitive impairment and 
Alzheimer’s dementia) [57].

Conclusions
To the best of our knowledge, this is the first attempt to 
evaluate ASD subtype heterogeneity under a multimodal 
fusion and cross-cohort prediction framework, and such 
heterogeneity is more prevalent in fMRI than sMRI. We 
not only identified functional–structural DLPFC and 
SM_TG as the common brain regions across Asperger’s, 
PDD-NOS and Autistic, but also confirmed that the 
main differences were negative functional subcortical 
areas. The predictability of the identified subtype-related 
patterns used in predicting symptom scores in an inde-
pendent sample (ABIDE I) verifies the uniqueness of the 
different neural features of these traditional subtypes. 
According to these results, we conclude that although 
ASD has a common neural basis that is consistent with 
the core deficits involved primarily in social interaction, 
each of the different traditional ASD subtypes is strongly 
linked to unique multimodal covarying brain systems. 
The identified core and unique subtype-related patterns 
may help us to better understand the underlying mecha-
nisms involved in the behavioral heterogeneity, particu-
larly as related to the range of severity in ASD from a 
multimodal brain imaging perspective.
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