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Abstract 

Background: Phelan‑McDermid Syndrome (PMS) is a rare condition caused by deletion or mutation of the SHANK3 
gene. Individuals with PMS frequently present with intellectual disability, autism spectrum disorder, and other neu‑
rodevelopmental challenges. Electroencephalography (EEG) can provide a window into network‑level function in 
PMS.

Methods: Here, we analyze EEG data collected across multiple sites in individuals with PMS (n = 26) and typically 
developing individuals (n = 15). We quantify oscillatory power, alpha‑gamma phase‑amplitude coupling strength, 
and phase bias, a measure of the phase of cross frequency coupling thought to reflect the balance of feedforward 
(bottom‑up) and feedback (top‑down) activity.

Results: We find individuals with PMS display increased alpha‑gamma phase bias (U = 3.841, p < 0.0005), predomi‑
nantly over posterior electrodes. Most individuals with PMS demonstrate positive overall phase bias while most 
typically developing individuals demonstrate negative overall phase bias. Among individuals with PMS, strength of 
alpha‑gamma phase‑amplitude coupling was associated with Sameness, Ritualistic, and Compulsive behaviors as 
measured by the Repetitive Behavior Scales‑Revised (Beta = 0.545, p = 0.011).

Conclusions: Increased phase bias suggests potential circuit‑level mechanisms underlying phenotype in PMS, offer‑
ing opportunities for back‑translation of findings into animal models and targeting in clinical trials.
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Introduction
Phelan-McDermid Syndrome (PMS) is a well-charac-
terized genetic condition that results from haploinsuffi-
ciency of SHANK3 in the 22q13.3 region. The phenotype 
in PMS is frequently characterized by intellectual disabil-
ity [1, 2], autism spectrum disorder (ASD; 50–84%) [3, 4], 

and epilepsy [5]. SHANK3 codes for a master scaffolding 
protein in the postsynaptic density of glutamatergic syn-
apses [6], and its isoforms perform a variety of synaptic 
functions relevant to neuronal excitability and plasticity 
[7–15].

A key step in understanding the translational path-
way from cells to circuits, networks and ultimately phe-
notype, involves measurements that reflect large scale 
network dynamics, including assessments of intrinsic 
neural oscillations. Electroencephalography (EEG) offers 
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particular opportunity in this regard, because it can 
measure network dynamics in both humans and animal 
models, allowing for both forward and back-translation 
of findings. Clinical EEG (evaluated by visual review) fre-
quently demonstrates abnormalities in PMS, including 
generalized slowing of activity, slowing or absence of the 
occipital dominant rhythm, and epileptiform activity [5, 
16]. Epileptiform activity on EEG is also frequently seen 
in ASD more broadly [17]. Shank3B null mutant mouse 
models have demonstrated altered oscillatory power, 
depending on the location and frequency band studied 
[9, 14, 18]. Numerous studies in humans with ASD have 
demonstrated various abnormalities in resting EEG spec-
tral power [19]; however, quantitative studies of EEG 
activity in humans with PMS have not been previously 
published.

Recently, there has been increasing interest in the cou-
pling of EEG activity across frequencies, using measures 
such as Phase-Amplitude Coupling (PAC), given the pos-
sibility that such cross-frequency coupling has distinct 
mechanistic underpinnings. Such coupling is crucial for 
many of the cognitive functions that are altered in neu-
rodevelopmental disorders, such as long-range com-
munication [20], integration of local and global cortical 
processing [21], and segmenting and prioritizing sensory 
input [20, 22]. Altered PAC strength in the alpha-gamma 
frequency pair has been reported in individuals with 
ASD at baseline (i.e., rest) and associates with symptom 
severity [23, 24]. PAC is also altered during tasks in some 
neurodevelopmental disorders, including during face 
processing in ASD [25] and cognitive discrimination in a 
mouse model of Fragile X syndrome [26]. Likewise, PAC 
during the period preceding an auditory stimulus has 
been found to positively correlate with non-verbal intel-
ligence quotient in Fragile X syndrome [27]. Cross-fre-
quency coupling thus has theoretical relevance to ASD, 
intellectual disability, and associated neurogenetic disor-
ders in which such processes are likely altered [28–30].

Recent work suggests not just the strength (the extent 
to which PAC occurs), but the phase (e.g., where in rela-
tion to the alpha waveform gamma amplitude is maxi-
mal), can signal important network characteristics. The 
phase at which fast oscillations are strongest can vary 
by cortical layer [31] and with alterations in interneuron 
function [32]. Surface EEG measurements demonstrate 
the alpha phase resulting in maximum gamma power 
can vary by age [33] and depth of anesthesia [34]. Differ-
ences in PAC phase have been found with encoding suc-
cess [35] and context [36], and PAC phase bias has been 
suggested to reflect the ratio of feedforward (bottom-up) 
to feedback (top-down) cortical activity [33], suggest-
ing the phase of PAC can be functionally relevant par-
ticularly among conditions commonly associated with 

autism spectrum disorder. The timing of gamma within 
the alpha cycle consequently has the potential to capture 
alterations in brain connectivity and function that result 
from specific synaptic perturbations and underlie clinical 
disorders.

EEG measures of PAC strength and PAC phase thus 
offer opportunities to enhance understanding of cir-
cuit-level dysfunctions in PMS. Here, we first examined 
whether individuals with PMS, as compared to typically 
developing (TD) individuals display differences in alpha-
gamma PAC strength and phase. Second, we investigated 
whether these EEG metrics associate with measures of 
phenotype among individuals with PMS. We hypoth-
esized (1) individuals with PMS would demonstrate 
increased PAC strength and phase bias, compared to 
typically developing controls and (2) PAC metrics would 
correlate with sensory processing difficulties and ASD 
symptom severity.

Methods
Participants
Participants were recruited through a prospective, 
observational cohort study at four institutions across 
the United States as a part of the Developmental Syn-
aptopathies Consortium (Clinical Trial NCT02461420): 
Icahn School of Medicine at Mount Sinai, University of 
Texas Southwestern, Rush University Medical Center, 
and Boston Children’s Hospital. Stanford University and 
the National Institute of Mental Health also participated 
in the overarching study, but because they only collected 
phenotyping data and did not collect EEG, participants 
recruited at those institutions are not included here. In 
total, 31 individuals with PMS and 17 TD individuals had 
EEG completed. Participants with PMS were included 
if they had pathogenic deletions or mutations of the 
SHANK3 gene; clinical reports were reviewed to confirm 
this information. Typically-developing individuals were 
matched at the group level with PMS participants on 
chronological age and sex. TD individuals were excluded 
if they had a diagnosis of any intellectual disability, ASD, 
or other learning, developmental, psychiatric, or neuro-
logical disorders as determined by parent report. All par-
ticipants were 4 to 19 years of age (inclusive). Informed 
written consent was obtained from legal guardians and 
assent was obtained from participants when appropriate. 
Table  1 shows demographics for participants with ade-
quate EEG data for inclusion (see below).

Phenotypic data
To examine how our EEG measures related to develop-
mental abilities and ASD phenotypes among individuals 
with PMS, the following assessments were conducted: 
the Vineland Adaptive Behavior Scales (Vineland II): 
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Survey Interview Form [37], the Autism Diagnostic 
Observation Schedule, 2nd edition (ADOS-2) [38], the 
Autism Diagnostic Interview-Revised [39], the Autism 
Diagnostic Criteria Checklist from the Diagnostic and 
Statistical Manual of Mental Disorders, 5th edition [40], 
the Short Sensory Profile (SSP) [41], and the Repeti-
tive Behavior Scale-Revised (RBS-R) [42]. A psycholo-
gist determined ASD diagnosis either on the basis of the 
study’s assessments or clinical experience when the par-
ticipant was seen clinically on a regular basis. Addition-
ally, to assess non-verbal cognitive ability, participants 
were either given the Mullen Scales of Early Learning 
(MSEL) [43] the Stanford Binet-5 (SB-5) [44], or the Dif-
ferential Ability Scales, 2nd edition (DAS-II) [45]. Data 
for a non-verbal intelligence quotient (NVIQ) was com-
piled depending on the test given: for participants given 
the SB-5, NVIQ was taken; for participants given the 
MSEL, the mean of the visual reception developmen-
tal quotient (visual reception age equivalent score/age 
in months) and fine motor developmental quotient (fine 
motor age equivalent score/age in months) was taken; for 
participants given the DAS-II, the non-verbal reasoning 
standard score was taken. Finally, for participants who 
had experienced seizures, a seizure history was collected.

EEG acquisition/processing
Continuous EEG was collected for up to 10 min. Partici-
pants viewed a silent movie of their choice during EEG 
recording as is common practice in individuals with 
neurodevelopmental disorders [47]. EEG was recorded 
using either a 128-channel Hydrocel Geodesic Sensor 
Net or a 32 channel ActiveTwo Biosemi net. Data were 
sampled at either 512 Hz or 1000 Hz (all files were later 
resampled to 250 Hz). Impedances were kept below the 
recommendations for the specific EEG system being 
used prior to recording. For a subset of individuals with 
PMS, continuous EEG was again collected approximately 
12  weeks after the initial recording. These subsequent 
recordings were used in place of initial recordings if the 
initial recording did not meet data quality thresholds 
(n = 1); all other analyses were performed using the initial 
recording.

Files were processed using the Batch EEG Automated 
Processing Platform (BEAPP) [48]. Within BEAPP, the 
Harvard Automated Preprocessing Pipeline for EEG 
(HAPPE), which was developed specifically to optimize 
preprocessing of developmental EEG data with poten-
tially high levels of artifact and short recordings, was used 
to automate preprocessing and artifact minimization 

Table 1 Demographic information for participants with useable 
EEGs

Categorical variables (i.e. yes, no) are presented as the number in each 
category, followed by the percentage in each category. Continuous variables 
are presented as the mean value ± their standard deviation. *No EEGs from 
University of Texas Southwestern retained enough data after artifact rejection 

PMS (n = 26) TD (n = 15)

Sex 10 (M) 16 (F) 9 (M) 6 (F)

Collection site*

 Icahn School of Medicine at Mount Sinai 11 (42.3%) 10 (33%)

 Rush University Medical Center 8 (30.8%) 5 (67%)

 Boston Children’s Hospital 7 (26.9%) 0 (0%)

Net type

 Hydrocel 128 18 (69%) 10 (33%)

 Biosemi 32 8 (31%) 5 (67%)

Age (years) 9.5 ± 4.25 10.0 ± 2.39

ASD diagnosis

 ASD 11 (42%) 0 (0%)

 Non‑ASD 14 (54%) 15 (100%)

 Unknown 1 (4%) 0 (0%)

ADOS

 Completed 22 (85%) 0 (0%)

 Comparison score 6.05 (2.54) –

Vineland

 Completed 25 (96%) 0 (0%)

 Adaptive behavior composite standard score 52.8 ± 13.4 –

 Communication composite standard score 58.0 ± 14.6 –

SSP

 Completed 22 (85%) 3 (20%)

 Total score 143.9 ± 16.5 178.7 ± 17.1

RBS‑R

 Completed 23 (88%) 0 (0%)

 Total score 16.26 ± 15.7 –

MSEL

 Completed 16 (61.5%) 0 (0%)

 NVIQ 19.98 ± 10.9 –

SB5

 Completed 9 (34.6%) 0 (0%)

 NVIQ 46.56 ± 7.5 –

DAS

 Completed 2 (7.7%) 0 (0%)

 NVIQ 73.50 ± .71 –

NVIQ

 Completed 25 (96%) 0 (0%)

 Non‑verbal intelligence quotient 31.4 ± 17.9 –

Seizure history

 Yes 4 (15.4%) –

 No 21 (80.8%) –

 Unknown 1 (3.8%) 15 (100%)

SHANK3 –

 Mutation 7 (26.9%) –

 Deletion 19 (73.1%) –

 Deletion size (mega base pairs) 3.95 ± 3.0 –

to be analyzed

Table 1 (continued)
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[49]. Data were first filtered using a 1 Hz high-pass filter 
and a 100 Hz low-pass filter. Data were then downsam-
pled to 250  Hz for optimal performance of the HAPPE 
pipeline. With the exception of Cz, which was used as 
a reference electrode in some sites’ systems, only elec-
trodes in the international 10–20 system were included 
in this analysis (18 total) to allow standardization of 
analyses across net types. Epochs of signal with any 
channel’s amplitude > 40 μV (the HAPPE default thresh-
old, reflecting the reduced signal amplitude that results 
from wavelet-thresholding and independent components 
analysis in HAPPE) were removed. EEG recordings were 
removed from further analysis if they exceeded thresh-
olds for HAPPE data quality as per [50] in one or more 
of the following output parameters: percent good chan-
nels, mean retained artifact probability, median retained 
artifact probability, percent of independent components 
rejected, and percent variance retained after artifact 
removal. Data were subsequently re-referenced using 
an average reference, and then segmented into 2  s win-
dows for power and PAC analysis. For each participant, 
150 segments (300 s of data) were randomly selected; files 
with fewer than 150 segments of data at this stage were 
not analyzed. Primary power and PAC metrics were then 
obtained using code added to the BEAPP software.

Power analyses
Power was computed across frequencies using a three 
taper multitaper window [51]. Power was then computed 
for a number of frequency bands: Delta [1–4 Hz), Theta 
[4–8 Hz), Alpha [8–12 Hz), Beta [12–30 Hz), and Gamma 
[30–55 Hz). Total power was computed as all frequencies 
between [1–55  Hz]. The power at each frequency band 
and the overall 1–55 Hz range was computed by adding 
the power spectral density over the frequency range of 
interest.

To capture each frequency band’s relative contribu-
tion to total power, the relative power at each frequency 
band was computed as the power at each frequency band 
divided by the total power. Power values were then aver-
aged across electrodes. Visual inspection of the power 
spectra, averaged across the occipital channels analyzed 
in this study (O1 and O2), was used to identify the peak 
alpha frequency of each participant.

PAC analysis
Modulation index
To capture the presence of coupling, PAC was first quan-
tified using the Modulation Index (MI) [52]. Because the 
data are not time locked to any specific task, we focus on 
PAC in the alpha-gamma range, where prior studies have 
shown abnormalities in other neurodevelopmental disor-
ders using resting or non-time-locked data [23, 24]. For 

each frequency pair, the raw signal in each segment was 
exported from MATLAB into Python and filtered into a 
range of alpha (8–12 Hz in 2 Hz steps) and gamma (here, 
28–56 Hz to allow for division into 4 Hz steps) frequen-
cies using code adapted from Dupré la Tour et  al. [53]. 
Alpha frequencies were filtered using a constant band-
width of 2  Hz, while gamma frequencies were filtered 
using an upper sideband variable bandwidth, so as to 
avoid including phase frequencies in the amplitude fre-
quencies. In detail, for each gamma frequency, the lower 
passband cutoff was 2  Hz below the gamma frequency, 
and the upper passband cutoff was set as the alpha phase 
frequency plus the gamma amplitude frequency [24]. 
For example, for the combination of 40  Hz gamma and 
8 Hz alpha, the lower limit of the gamma amplitude fil-
ter was 38 Hz (40 − 2), while the upper limit of the filter 
was 48  Hz (40 + 8). Filtering at this step consisted of a 
zero-phase cosine-based filter to extract the real compo-
nent, and then a sine-based filter to extract the imaginary 
component, resulting in a complex-valued output signal 
[53]. The alpha phase time series, or gamma amplitude 
time series, were obtained from this complex signal. The 
phases of the alpha signal were then binned into 18 20° 
intervals (− 180° to 180°), and the mean of the ampli-
tude of the gamma signal occurring within each phase 
bin was calculated. Mean gamma amplitude values in 
each phase bin were then normalized by dividing each 
bin value by the sum of all bin values. Data were then 
imported into MATLAB, where the amplitude of the 
gamma signal at each phase bin of the alpha signal was 
then averaged together across segments. The  MIraw was 
then computed as the Kullback–Leibler divergence of 
the gamma amplitude distribution from a uniform dis-
tribution [52]. We then employed a time-shift procedure 
to control for factors that may generate spurious phase-
amplitude coupling. In detail, for each participant, 200 
surrogate MI values  (MIsurr) were generated by repeat-
ing the procedure after offsetting gamma amplitude from 
the alpha phase distribution by a randomized time shift 
between 0.1 and 1.9 s. A normalized MI (z-MI) was then 
computed as the z-score of the  MIraw compared to the 
distribution of  MIsurr values [54]. The z-MI at each alpha 
and gamma frequency combination was then averaged to 
obtain a single overall alpha-gamma PAC value for each 
participant, at each electrode.

Phase bias
Modulation Index captures the extent of coupling. We 
additionally set out to quantify whether gamma ampli-
tude increased closer to the rising or falling phase of 
the alpha waveform, and to what degree. To do so, we 
employed a metric termed phase bias, drawing on meas-
ures of phase preference [32] and prior findings that this 
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tends to show a bimodal distribution (i.e., with fast activ-
ity occurring maximally at either the negative or posi-
tive phases (corresponding to rising and falling phases, 
respectively) of the slower waveform [35]. Specifically, 
we quantified the phase bias of the gamma amplitude to 
the positive phases of the alpha waveform; i.e., the rela-
tive change of gamma amplitude  (gammaamp) during the 
positive phases (0°–180°) of the alpha waveform. Thus, 
phase bias is calculated as (Σgammaamp in positive phases 
of the alpha waveform)/Σ(gammaamp in all phases of the 
alpha waveform) − 0.5. Importantly, here, a cosine-based 
filter was used to extract alpha phase; as a result, 0° cor-
responds to the peak of alpha, + 90° corresponds to the 
falling zero crossing of alpha, 180°/− 180° corresponds 
to the trough of alpha, and − 90° corresponds to the ris-
ing zero crossing of alpha. Therefore, a phase bias > 0 
indicates gamma amplitude increases at the falling 
phase of the alpha waveform, and a phase bias < 0 indi-
cates gamma amplitude increases at the rising phase of 
the alpha waveform. Additionally, a larger distance from 
0 (where gamma amplitude does not increase preferen-
tially at either positive or negative phases of alpha) indi-
cates stronger phase bias. The phase bias at each alpha 
frequency and gamma high frequency combination was 
then averaged to obtain a single overall alpha-gamma 
phase bias value.

Statistical analysis
Group comparisons
We first set out to test whether power or phase-ampli-
tude coupling metrics differed between groups. Because 
most metrics were not normally distributed, all group 
comparisons were performed using a non-parametric 
test (independent samples Mann–Whitney U) unless 
otherwise specified. Relative power in each frequency 
band was compared between groups, and an independ-
ent samples t test was used to compare peak alpha fre-
quency between groups. To test whether overall PAC 
metrics differed in individuals with PMS as compared to 
typically developing individuals, group comparisons were 
first performed on z-MI and phase bias data averaged 
across all 10–20 electrodes. Subsequently, because PAC 
has been shown to differ between anterior and posterior 
scalp areas [33], these group comparisons were repeated 
after averaging PAC metrics across all anterior 10–20 
electrodes (Fp1, Fp2, F3, F4, F7, F8, Fz) and then poste-
rior 10–20 electrodes (P3, P4, P7, P8, Pz, O1, O2). Finally, 
these comparisons of overall, anterior, and posterior 
z-MI and phase bias were repeated between individuals 
with PMS diagnosed with ASD (N = 11), and individuals 
with PMS diagnosed without ASD (N = 14). Data were 
analyzed in SPSS (IBM Corp, 2016).

Clinical associations
All associations were performed using linear regres-
sion analysis. Because PAC has been shown to change 
with age [33], we tested whether age was associated with 
PAC metrics among all participants. Additionally, to 
test whether the relationship between ln(z-MI) and age 
was different in individuals with PMS as compared to 
TD individuals, a regression was performed, with ln(z-
MI) as the dependent variable, and age, group, and age 
by group included as independent variables. The asso-
ciation between alpha power and PAC metrics (aver-
aged across all electrodes) was additionally examined. 
To test how PAC associated with behavioral phenotype 
in individuals with PMS, linear regression analysis was 
performed between PAC metrics (z-MI and phase bias) 
and the following measures: Vineland Adaptive Behavior 
Composite, Vineland Socialization Composite, ADOS 
comparison score, SSP, RBS-R, and NVIQ. Additional 
linear regressions were performed between z-MI and the 
6 behavior sub-scales of the RBS-R (Restricted Interest, 
Sameness, Ritualistic, Compulsive, Self-Injurious, and 
Stereotypic). Because z-MI did not demonstrate a normal 
distribution, linear regressions were performed on the 
natural log transformation of z-MI; one negative z-MI 
value was not included in this analysis. Age was included 
as a control variable in all regressions.

Clinical comparisons
In individuals with PMS, we tested whether PAC meas-
ures differed by a number of categorical clinical variables, 
including: sex, presence of an ASD diagnosis, presence of 
a seizure history (at least one seizure event experienced), 
and whether the participant has a SHANK3 mutation or 
deletion. All comparisons were computed using a Mann–
Whitney U test. For all associations between EEG and 
clinical measures, a Benjamini–Hochberg correction was 
applied to power, ln(z-MI) and phase bias clinical corre-
lations separately (FDR = 0.1).

Participants with insufficient EEG data
In total, there were 33 individuals with PMS and 17 TD 
individuals in the study. After removal of participants 
who did not complete EEG (n = 2 with PMS), had insuf-
ficient data quality (n = 4 with PMS, n = 1 TD), or had 
insufficient data length (n = 1 with PMS and n = 1 with 
TD), 26 individuals with PMS and 15 TD individuals 
remained for further analysis. Compared to PMS par-
ticipants included in this dataset, the 7 PMS partici-
pants excluded for unusable EEG data were more likely 
to be male (6/7). Otherwise, they were not significantly 
different in age (mean = 9.94, SD = 4.58, p = 0.7587), 
they demonstrated similar prevalence of ASD diagnosis 
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(4/7) and seizure history (2/7) and there were no signif-
icant differences in included vs. excluded participants 
with PMS on the Vineland Adaptive Behavior Compos-
ite, the Vineland Communication Composite, ADOS 
severity score, NVIQ, SSP, or RBS-R (p > 0.05). All tests 
were performed using an independent samples Mann–
Whitney U test.

Results
Power and phase‑amplitude coupling in PMS
In all frequency bands tested, no differences in relative 
power were observed between individuals with PMS and 
TD individuals after correcting for multiple compari-
sons (FDR = 0.1, 5 power comparisons) (Fig. 1). Reduced 
alpha power in PMS relative to TD approached, but did 
not reach, significance (U = − 4.457, p = 0.035). Gamma 
power enhancements in PMS also did not reach signifi-
cance (U = 2.380, p = 0.123).

Mean peak alpha frequency was found to be 9.38  Hz 
(SD = 0.921  Hz) in individuals with PMS, and 9.43  Hz 
(SD = 0.610) in TD individuals; peak alpha frequency was 
not found to differ between groups (t = 0.170, p = 0.866). 
Two individuals with PMS and two TD individuals did 
not display a peak in alpha activity, and two individuals 
with PMS demonstrated a peak alpha frequency outside 
of the 8–12 Hz range (7.32 and 7.81 Hz). These partici-
pants all displayed PAC values in the typical range.

When averaging across all channels, individuals with 

PMS largely demonstrated maximal gamma amplitude at 
the falling phase of the alpha cycle, whereas TD partici-
pants largely demonstrated maximal gamma amplitude at 
the rising phase of the alpha cycle (Fig. 2). Consequently, 
individuals with PMS demonstrated a positive overall 
phase bias (median = 4.091 *  10–4, SD = 1.02 *  10–3), and 
TD individuals demonstrated a negative overall phase 
bias (median = − 2.079 *  10–4, SD = 5.29 *  10–4) (Fig.  3). 

Delta Theta Alpha Beta Gamma

evitaleR
re

woP

TD

PMS

Fig. 1 Relative power values over all electrodes in the 10–20 system 
at each frequency band of TD individuals compared with individuals 
with PMS. Median, 10th and 90th percentiles are plotted

Fig. 2 Gamma (28–56 Hz) amplitude plotted as a function of alpha (8–12 Hz) phase, in all channels (left), anterior channels (middle), and posterior 
channels (right). For each group, amplitude mean and standard deviation values are plotted
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After correcting for multiple comparisons (FDR = 0.1, 6 
PAC comparisons), overall phase bias was significantly 
greater in individuals with PMS than TD individuals 
(U = 3.519, p = 0.0005).

In both TD individuals and individuals with PMS, 
phase bias largely increased along the anterior–poste-
rior axis of the scalp, with the exception of electrodes 
P3 and P4, which demonstrated a negative phase bias 
in both groups (Fig. 4). Analysis of phase bias in ante-
rior and posterior regions separately showed posterior 
electrodes exhibited increased phase bias in individu-
als with PMS (U = 2.734, p = 0.006) while anterior 
electrodes did not exhibit a difference between groups 
(U = 0.189, p = 0.862) (Figs.  2, 3). Likewise, poste-
rior z-MI was significantly increased in individuals 
with PMS (U = 2.165, p = 0.030), while anterior z-MI 

did not demonstrate a difference between groups 
(U = − 0.352, p = 0.738). On the other hand, no dif-
ferences were found when comparing overall z-MI 
between groups (Fig.  5, Additional file  1: Table  S1). 
In all participants, no association was found between 
alpha power and ln(z-MI) (Beta = 0.156, p = 0.337), or 
phase bias (Beta = − 0.240, p = 0.131) when averaging 
across all electrodes.

Phase‑amplitude coupling and clinical characteristics
In all participants, age was significantly associated with 
ln(z-MI) (Beta = 0.465, p = 0.002); age was therefore 
controlled for in subsequent regressions (Table  2). In a 
regression comparing ln(z-MI) and age, the interaction 
between age and group was not significant (Beta = 0.017, 
p = 0.916), indicating the relationship between age and 
ln(z-MI) does not differ between individuals with PMS 
and TD individuals (Fig.  6). In individuals with PMS, 
ln(z-MI) increased with RBS-R total score (Beta = 0.545, 
p = 0.011); specifically, ln(z-MI) was found to increase 
with the Sameness, Ritualistic, and Compulsive sub-

scales of the RBS-R (Table  3). No other associations 
between PAC measures and phenotypic measures 
reached significance. Additionally, no significant differ-
ences in PAC metrics between categorical phenotypic 
variables within individuals with PMS (sex, ASD diag-
nosis, SHANK3 deletion, seizure history) were observed 
(Table 4).

Discussion
We find individuals with PMS show significantly 
increased alpha-gamma phase bias relative to TD indi-
viduals, with most individuals with PMS demonstrat-
ing positive overall phase bias, whereas most typically 
developing individuals demonstrated negative over-
all phase bias in our sample. Between-group differ-
ences are primarily driven by findings over posterior 

Overall Anterior Posterior

ahplA
-

saiB
esahP

a
m

maG

TD
PMS

*

*

Fig. 3 Alpha (8–12 Hz)–Gamma (28–56 Hz) phase bias values of TD 
individuals compared to individuals with PMS. Comparisons were 
done using phase bias values averaged across all channels (Overall), 
all anterior channels (Anterior), and all posterior channels (Posterior). 
Median, 10th and 90th percentiles are plotted. *Indicates significance 
at Benjamini–Hochberg corrected p value of .0167

Fig. 4 Topographies of Alpha (8–12 Hz)–Gamma (28–56 Hz) phase bias values. The mean phase bias values for each group are shown, as well as the 
difference between the group means
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electrodes, where phase bias and PAC are both more 
strongly positive in individuals with PMS relative to TD 
individuals. Previous work has reported greater alpha-
gamma PAC in a midline parietal–occipital source 
in individuals with ASD [24]. Within individuals with 

PMS, no differences were observed with measures of 
overall ASD phenotype, or social functioning; however, 
RBS-R total score was found to increase with increased 
PAC strength, indicating in individuals with PMS, PAC 
strength may map on to this aspect of the ASD symp-
tom profile specifically.

The between-group differences in phase bias suggest 
that circuit function is perturbed in PMS, in a manner 
measurable by surface EEG. This finding suggests several 
opportunities for back-translation into animal models 
to elucidate underlying mechanisms. For example, scalp 
level EEG does not reflect the unified activity of the cor-
tex, but rather the grand average of many networks often 
exhibiting conflicting activity. Phase bias is known to 
vary by cortical layer. Laminar recordings in monkeys 

ahplA
-

z
a

m
maG

-M
I

TD

PMS

Overall Anterior Posterior

Fig. 5 z‑MI values of Alpha (8–12 Hz)–Gamma (28–56 Hz) coupling 
in TD individuals compared to individuals with PMS. Comparisons 
were done using z‑MI values averaged across all channels (Overall), 
all anterior channels (Anterior), and all posterior channels (Posterior). 
Median, 10th and 90th percentiles are plotted

Table 2 Associations between behavioral phenotype and PAC 
metrics in Phelan‑McDermid syndrome

All tests were performed as linear regressions, with age included as a control 
variable for all subsequent tests. A Benjamini–Hochberg correction was applied 
to ln(z-MI) and phase bias comparisons separately. * indicates significance 
(FDR = .1)

Measure Standardized beta 
coefficient

P value

ln(z‑MI) versus – –

 Age .500 .011*

 Vineland adaptive behavior .146 .555

 Vineland socialization − .040 .870

 Deletion size − .092 .723

 SSP total − .336 .225

 ADOS comparison score − .379 .150

 RBS‑R total score .545 .011*

 NVIQ .618 .543

Phase bias versus – –

 Age .194 .342

 Vineland adaptive behavior − .104 .630

 Vineland socialization − .202 .343

 Deletion size .232 .261

 SSP total .367 .100

 ADOS comparison score .026 .907

 RBS‑R total score − .092 .652

 NVIQ − .980 .338

Age (years)
20.0015.0010.005.00.00

ln
(z

-M
I)

4.00

2.00

.00

-2.00

PMS
TD

Group

Fig. 6 Relationship between age and ln(z‑MI). Trend lines are plotted 
separately for typically developing individuals and individuals with 
PMS

Table 3 Associations between RBS‑R sub‑scales and ln(z‑MI) in 
Phelan‑McDermid Syndrome

All tests were performed as linear regressions, with age included as a control 
variable for all subsequent tests. A Benjamini–Hochberg correction was applied. 
* indicates significance (FDR =.1)

RBS‑R sub‑scale Standardized beta 
coefficient

P value

Restricted interest .337 .183

Sameness .546 .012*

Ritualistic .490 .019*

Compulsive .448 .038*

Self‑injurious .206 .374

Stereotypic .362 .153
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and rats demonstrate that spontaneous current sinks in 
theta and alpha bands in layers 2/3-5a are associated with 
high gamma amplitudes and high action potential firing 
(and sources are associated with low gamma amplitudes 
and low action potential firing) whereas the opposite 
is true in layer 6 (sinks are associated with low gamma 
amplitudes and low action potential firing, and sources 
with high gamma amplitudes and high action potential 
firing) [31, 55]. Additionally, alpha current generators in 
layers 2/3 and 6 are in phase with one another, but out 
of phase with those in layer 4 [55], meaning whether 
scalp-level EEG gamma activity is phase-locked to the 
falling phase or the rising phase of alpha could depend 
on whether alpha activity from layers 2/3 and 6 or layer 
4 dominates the signal. Therefore, it is possible the 
phase bias presented here depends on the relative PAC 
and alpha activity of each cortical layer. Cortical layer 4 
predominantly accepts feedforward (thalamocortical) 

input, layer 6 predominantly provides feedback (cortico-
thalamic output), and layer 2/3 integrates feedforward, 
feedback, and lateral activity [56, 57]. Between-group dif-
ferences in surface level phase bias may therefore suggest 
altered balance of feedforward versus feedback informa-
tion transfer in PMS; this could be further examined in 
animal models.

Here, the phase bias abnormalities in individuals 
with PMS were localized to electrodes over the pos-
terior cortex. Alpha-gamma PAC has been previously 
shown to increase in the occipital cortex during visual 
tasks [58]. Notably, the present study analyzed EEG 
recordings collected while participants watched a silent 
movie. Cases of cortical visual impairment have been 
reported in some individuals with PMS [59]; there-
fore, the network perturbations captured here may also 
relate to abnormalities in visual processing in PMS.

Notably, we did not identify any differences in EEG 
power, in any frequency band, between individuals with 
PMS and TD individuals. This is in contrast to prior 
electrophysiological measurements in animal models, 
where power differences have been demonstrated in 
specific regions and frequency bands [9, 14, 18]. Still, 
no consistent findings have emerged in studies of ani-
mal models as well as in clinical studies. Here, we used 
relatively conservative statistical techniques, and a 
slight relaxing of statistical thresholds would have led 
to findings of overall low alpha power and high gamma 
power, consistent with some prior animal studies [9, 
14]. Nonetheless, the PAC effects (particularly phase 
bias) are quite strong and persist despite these con-
servative techniques. While prior studies of PAC dur-
ing some tasks demonstrate an inverse relationship 
between alpha power and PAC [60], we did not identify 
any such relationship in our sample. This suggests that 
our PAC findings are not driven by changes in nonsinu-
soidal alpha activity, and that PAC and alpha power can 
be independently modulated.

By grossly reflecting neural network activity, EEG is an 
intermediary on the spectrum from genotype to pheno-
type. Given the myriad possibilities for analysis that EEG 
offers, EEG itself thus also reflects a smaller spectrum-
within-a-spectrum from genotype to phenotype, depend-
ing on the exact analysis chosen. Here we demonstrate 
that one analytic technique (phase bias) leans toward 
a reflection of genotype more than phenotype. Nota-
bly, we do not have any data to suggest that this phase 
bias anomaly is specific to PMS; in fact, it is quite pos-
sible that similar phase bias anomalies could be present 
in other genetic disorders that affect similar pathways 
(e.g., other disorders of the mTOR pathway), and further 
research is necessary to test this. On the other hand, our 
findings suggest that zMI likely measures an aspect of 

Table 4 Comparing PAC metrics across categorical phenotypes 
in Phelan‑McDermid Syndrome

Median values (25th and 75th percentile values in parentheses) are presented 
for each category. All tests performed using a Mann–Whitney U test. A 
Benjamini–Hochberg correction was applied to ln(z-MI) and phase bias 
comparisons separately. * indicates significance (FDR = .1)

Measure PAC median Mann–Whitney U P value

z‑MI – – –

 Sex – – –

  Female 2.99 (1.19, 9.83) 2.16 .031

  Male 0.836 (0.512, 1.485) – –

 ASD diagnosis – – –

  Yes 1.45 (0.337, 3.73) ‑.712 .501

  No 1.60 (0.907, 6.71) – –

 SHANK3 – – –

  Deletion 1.22 (0.559, 4.98) − .723 .497

  Mutation 1.59 (1.23, 9.63) – –

 Seizure history – – –

  Yes 1.84 (.086, 9.50) .371 .748

  No 1.23 (.626, 4.35) – –

Phase bias *  104 – – –

 Sex – – –

  Female 5.00 (2.29, 15.7) 1.00 .336

  Male 3.67 (− 0.007, 5.17) – –

 ASD diagnosis – – –

  Yes 4.28 (2.88, 15.5) .876 .403

  No 3.33 (.534, 7.85) – –

 SHANK3 – – –

  Deletion 4.14 (0.210, 15.7) .145 .910

  Mutation 4.04 (0.751, 7.57) – –

 Seizure history – – –

  Yes 7.99 (− 1.85, 18.5) .889 .409

  No 3.84 (1.42, 6.71) – –
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neural network function that leans more towards pheno-
type; therefore, future research should explore whether 
zMI anomalies are associated with restricted and repeti-
tive behaviors in other neurodevelopmental disorders. 
Along similar lines, comparison of PAC and z-MI find-
ings between PMS and a phenotypically similar cohort 
would also be of interest.

However, the genotype–phenotype spectrum is just 
one of many axes that EEG-based measures may reflect. 
For example, EEG-based measures may also change 
across development. We find that z-MI increases with age 
in our sample (mean age 9.7 years), but phase bias does 
not. This extends prior findings, in which z-MI was found 
to increase across the first 3  years after birth in typical 
development [33]. Developmental effects are particularly 
important to consider in PMS given the known molecular 
and electrophysiological functions of SHANK3, includ-
ing effects on plasticity. SHANK3 provides scaffolding 
in the postsynaptic density of glutamatergic synapses 
[6], and Shank3 mutant mouse models have therefore 
demonstrated decreased excitability of glutamatergic [8, 
9, 14, 15] and GABAergic neurons [11]. Plasticity is also 
impaired in Shank3 mutants [13]. Excitability can be 
altered by developmental activity and plasticity within 
circuits, at times leading to seemingly contradictory find-
ings. For example, when inhibition is impaired more than 
excitation within corticostriatal circuitry during early 
development, the balance between activity of excitatory 
and inhibitory neurons can lead to cortical hyper-activity, 
with resulting changes in plasticity that ultimately cause 
high (rather than low) excitability of GABAergic neurons 
in this circuit [12]. In layer 2/3 of primary somatosensory 
cortex, Shank3 deficiency causes decreased excitability 
of GABAergic interneurons but increased excitability of 
glutamatergic neurons [11]. Trajectories across devel-
opment, combined with studies examining primary and 
compensatory mechanisms underlying these trajectories, 
can provide additional clues about the biological under-
pinnings of neurodevelopmental disorders including (but 
not limited to) PMS.

Limitations
Our ability to detect subtle phenotypic associations was 
hampered by several limitations. First, as is common in 
rare disease research, the sample size in the PMS group 
led to limited statistical power for assessing associations 
with categorical variables within this group. In particu-
lar, only 4 PMS individuals exhibited a history of seizures. 
Additionally, our typically developing cohort was small 
(15 EEGs analyzed), limiting our ability to identify differ-
ences with the PMS group. Second, the severity of PMS 
led several behavioral measures to suffer from a ‘floor’ 
effect, making it difficult to compare the phenotypes of 

individuals within the PMS group. Clinical assessments 
were also rarely conducted in in the typically develop-
ing cohort; as a result, the present study was not able to 
test for associations between PAC measures and clinical 
variables in this group. Also of note, though the individu-
als with PMS enrolled in this study that were not able to 
provide adequate EEG data for analysis did not demon-
strate clear differences on phenotyping measures, they do 
represent a subgroup of individuals with PMS this study 
was not able to capture. Finally, though the scalp-level 
EEG used here allows us to describe differences in grand-
average oscillatory activity, it is unable to differentiate the 
specific neural mechanisms underlying these differences; 
back-translation into animal models will likely be neces-
sary to further explore this.

Conclusion
Altered phase bias in PMS suggests altered network 
dynamics in this disorder. Mechanisms underlying 
altered network activity in PMS can be further elucidated 
using back-translation to determine underpinnings of 
phase bias abnormalities in animal models.

Future studies may assess the extent to which individu-
als with other neurodevelopmental and neurogenetic 
disorders have altered phase bias similar to that seen in 
PMS, suggesting common underlying mechanisms at the 
network level, and the extent to which phase bias may 
change in response to treatment in clinical trials.
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