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Abstract 

Background: Marked sex differences in autism prevalence accentuate the need to understand the role of biological 
sex‑related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been 
challenged by the limited availability of female data.

Methods: We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) 
control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7–18 years). Discovery analyses 
examined main effects of diagnosis, sex and their interaction across five resting‑state fMRI (R‑fMRI) metrics (voxel‑level 
Z > 3.1, cluster‑level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the 
results to different pre‑processing approaches and their replicability in two independent samples: the EU‑AIMS Longi‑
tudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance 
Autism Research.

Results: Discovery analyses in ABIDE revealed significant main effects of diagnosis and sex across the intrinsic func‑
tional connectivity of the posterior cingulate cortex, regional homogeneity and voxel‑mirrored homotopic connectiv‑
ity (VMHC) in several cortical regions, largely converging in the default network midline. Sex‑by‑diagnosis interactions 
were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were 
robust to different pre‑processing steps. Replicability in independent samples varied by R‑fMRI measures and effects 
with the targeted sex‑by‑diagnosis interaction being replicated in the larger of the two replication samples—EU‑AIMS 
LEAP.

Limitations: Given the lack of a priori harmonization among the discovery and replication datasets available to date, 
sample‑related variation remained and may have affected replicability.
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Background
Autism spectrum disorder (autism) is characterized by 
a marked male preponderance in prevalence with three 
times more males being diagnosed than females [1]. This 
pronounced sex-differential prevalence implies that sex-
related biological factors are likely implicated in the neu-
robiology of autism. However, little is known about the 
differential underlying neural expressions in males and 
females with autism. Such knowledge could widen our 
understanding of potential underlying mechanisms of 
autism and related neurodevelopmental conditions [2].

This has motivated research into the impact of biologi-
cal sex on brain organization in autism [2–5]. With the 
widely accepted view that the neurobiology of autism 
involves differences in large-scale brain networks [6, 7], 
resting-state functional magnetic resonance imaging 
(R-fMRI) has proven to be a valuable complementary 
tool for investigating atypicalities in intrinsic functional 
connectivity (iFC). While the exact nature of the intrin-
sic brain organization in autism remains to be established 
[6], research on the impact of biological sex differences in 
autism is just beginning to emerge.

Several R-fMRI studies have focused on autism-related 
sex differences in iFC [2, 8–18]. They vary on the extent 
of the functional networks and intrinsic properties 
examined. Most of them examined the strength of iFC 
between one or more regions/networks selected a priori 
[8–12, 14, 15], or via data-driven analyses [18]. A few oth-
ers investigated either local or homotopic iFC across the 
whole brain [2, 13, 17]. Across these different efforts, the 
pattern of findings have also been mixed; some studies 
supported the predictions from the ‘extreme male brain’ 
theory [12, 13], whereas others supported the predic-
tions from the ‘gender-incoherence’ theory [8, 11, 14, 15, 
18]. The ‘extreme male brain’ model predicts that brain 
characteristics in males and females with autism will 
resemble those in neurotypical males (i.e., shifts towards 
maleness in both sexes [19]). R-fMRI results consistent 
with a shift towards maleness in autism were reported 
in both Ypma et al. [12] and Kozhemiako et al. [13, 17]. 
The ‘gender incoherence’ model predicts that brain char-
acteristics in females with autism resemble those of neu-
rotypical males, whereas brain characteristics in males 
with autism resemble those of neurotypical females (i.e., 

androgynous patterns in the sexes [20]). The ‘gender 
incoherence’ model has been supported by findings from 
prior R-fMRI studies [8, 11, 14], where the results largely 
revealed hyper-connectivity in females with autism simi-
lar to neurotypical (NT) males and hypo-connectivity 
in males with autism similar to NT females. Such seem-
ingly inconsistent findings of sex-related differences were 
in part addressed by Floris et al. [2] who showed that, at 
least in males with autism, distinct patterns of atypical 
sex-differentiation coexist, and vary as a function of the 
neural networks involved. However, the intrinsic brain 
organization in females with autism has remained largely 
unclear and the scarce availability of female datasets in 
most studies may have contributed to the variability in 
findings in males and females [21, 22].

Accordingly, to explore sex-related atypicalities in 
autism relative to NT controls, we used, as discovery 
sample, large R-fMRI datasets of both males and females 
of autism and NT selected from the Autism Brain Imag-
ing Data Sharing Exchange (ABIDE) [22, 23]. By aggre-
gating neuroimaging datasets from multiple sources, this 
data sharing initiative has begun to provide a means to 
address the challenge of underrepresentation of female 
datasets in autism research. Examining both sexes in 
both autism and controls allows to directly capture not 
only sex differences that are common across individuals 
(i.e., regardless of their diagnosis [main effect of sex]), but 
also those that are specific to autism and point towards 
atypical autism-specific sex differential patterns (i.e., sex-
by-diagnosis interaction effects) [4]. To do so, given prior 
inconsistencies in the literature and the limited insights 
into the brain organization of females with autism, we 
used a discovery science approach. Unlike most prior 
work that focused on specific networks or circuits 
selected a priori, we investigated the whole-brain across 
multiple R-fMRI metrics. We selected R-fMRI metrics 
capturing unique aspects of the intrinsic brain organi-
zation during typical development [24, 25] and, most 
germane to this study, being reported to be involved in 
typical sex differences and be affected by autism. They 
comprised: (1) posterior cingulate cortex (PCC)-iFC—
e.g., [2, 12, 23, 26–32]; (2) voxel-mirrored homotopic 
connectivity (VMHC) [33]—e.g., [13, 32–35]; (3) regional 
homogeneity (ReHo) [36]—e.g., [17, 32, 37, 38]; (4) 

Conclusions: Atypical cross‑hemispheric interactions are neurobiologically relevant to autism. They likely result from 
the combination of sex‑dependent and sex‑independent factors with a differential effect across functional cortical 
networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated 
large‑scale data collection across studies.

Keywords: Autism spectrum disorder, Resting‑state functional connectivity, Sex differences, Replication, Robustness, 
Voxel‑mirrored homotopic connectivity
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network degree centrality (DC) [39]—e.g., [32, 39–41]; 
and (5) fractional amplitude of low frequency fluctua-
tions (fALFF) [23, 42]—e.g., [23, 32, 43].

Beside the role of small female samples, prior incon-
sistencies in autism-related sex differences in R-fMRI can 
be due to other factors that impact reproducibility. For 
example, while there are growing concerns on the role of 
pre-processing strategies [44, 45], a recent study showed 
that their impact on autism-related mean group-differ-
ences is minimal [46]. Additionally, while several stud-
ies have reported some degree of consistency on R-fMRI 
findings across either independent, or partially overlap-
ping, samples [41, 47–49], results from other studies 
have raised concerns on the replicability of group-mean 
diagnostic effects [46, 50]. However, none of these stud-
ies have explicitly examined robustness and replicability 
of sex-by-diagnosis interaction effects, which account 
for a potentially relevant source of variability in autism—
biological sex. Thus, we conducted secondary analy-
ses to assess the extent to which the pattern of findings 
obtained in our discovery analyses were also observed 
(a) after applying different nuisance pre-processing steps 
that have been previously validated, though used incon-
sistently in the autism literature [46], and (b) across two 
independent, multisite R-fMRI datasets: the EU-AIMS 
Longitudinal European Autism Project (LEAP) [51, 
52] and the Gender Explorations of Neurogenetics and 
Development to Advance Autism Research (GENDAAR) 
dataset [53]—i.e., robustness and replicability.

Methods
Discovery sample: ABIDE I and II
For discovery analyses, we examined the R-fMRI data-
set with one of the largest number of females and males 
in both the autism and the NT groups available to date, 
selected from the Autism Brain Imaging Data Exchange 
(ABIDE) repositories ABIDE I and II [22, 23]. The final 
ABIDE I and II dataset of N = 1019 included N = 82 
females with autism, N = 362 males with autism, N = 166 
neurotypical females (NT F), and N = 409 neurotypical 
males (NT M), aggregated across 13 sites. Specific selec-
tion criteria are described in Supplementary Methods in 
the Additional file 1 and depicted as a figure in the Addi-
tional file 1: Figure S1. Briefly, we selected cases between 
7 and 18 years of age (the ages most represented across 
ABIDE sites), with MRI data successfully completing 
brain image co-registration and transformation to stand-
ard space, with FIQ between 70 and 148 and with mean 
framewise displacement (mFD) [54] within three times 
the interquartile range (IQR) + the third quartile (Q3) of 
the sample (i.e., mFD 0.39  mm). Further steps included 
matching for mean age across groups, as well as for mFD 
and IQ within diagnostic groups. This latter step limited 

the number of exclusions while keeping average group 
motion low (mFD < 0.2  mm) and sampling biases that 
may result when matching neurodevelopmental condi-
tions to NT around intrinsic features such as IQ [55, 56]. 
At each step, any sites with less than three individual 
datasets per diagnostic/sex groups were excluded. Demo-
graphics and characteristics of this sample are summa-
rized in Table  1 and in Supplementary Methods in the 
Additional file 1.

Discovery analysis pre‑processing pipeline
We examined five whole-brain R-fMRI metrics previously 
reported to reflect typical sex differences and found to be 
atypical in autism, including (1) PCC-iFC, (2) VMHC, (3) 
ReHo, (4) DC and (5) fALFF (see Additional file 1: Sup-
plementary Methods). R-fMRI image pre-processing 
steps included: slice time correction, 24 motion param-
eters regression [57], component-based noise reduction 
(CompCor) [58], removal of linear and quadratic trends, 
and band-pass filtering (0.01–0.1 Hz, for all metrics but 
fALFF). Functional-to-anatomical co-registration was 
achieved by Boundary Based Registration (BBR) using 
FSL FLIRT [59]. Linear and nonlinear spatial normali-
zation of functional echo planar images (EPIs) to Mon-
treal Neurological Institute 152 (MNI152) stereotactic 
space (2 mm3 isotropic) was done using ANTS registra-
tion (Advanced Neuroimaging Tools) [60]. Computation 
of voxel-mirrored homotopic connectivity (VMHC) fol-
lowed registration to a symmetric template. All R-fMRI 
derivatives were smoothed by a 6 mm FWHM Gaussian 
kernel. To account for site and collection time variability 
across each of the data collections in ABIDE I and II data 
repositories, site effects were removed using the ComBat 
function available in python [61] (https ://githu b.com/
brent p/comba t.py). This approach has been shown to 
effectively account for scanner-related variance in multi-
site R-fMRI data [61]. For further details see Additional 
file 1: Supplementary Methods.

Discovery group‑level analyses
Statistical Z-maps were generated within study-specific 
functional volume masks including all voxels in MNI 
space present across all subjects. Main effects of diag-
nosis and sex along with their interaction were explored 
by fitting a general linear model (GLM) including diag-
nosis or/and sex as the regressors of interest respectively, 
and age and mean framewise displacement (mFD) [54] 
as nuisance covariates. In primary analyses, we did not 
include FIQ as a covariate as this is thought to be subop-
timal when comparing groups selected from populations 
carrying intrinsic IQ differences such as autism and NT 
[56]. Nevertheless, to provide an indication as to whether 
IQ may affect primary findings, in supplementary 

https://github.com/brentp/combat.py
https://github.com/brentp/combat.py
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Table 1 Characterization of  sample merged across  ABIDE I and  II Cluster masks are overlaid on  inflated brain maps 
generated by BrainNet Viewer

ABIDE Autism Brain Imaging data exchange, ADI-R Autism Diagnostic Interview-Revised, ADOS-2 Autism Diagnostic Observation Schedule-2, ASD Autism Spectrum 
Disorder, CSS Calibrated Severity Score, F females, IQ intellectual quotient, M males, Mean FD mean framewise displacement [54]; NT neurotypical, RRB restricted 
repetitive behaviors
a ABIDE I data collections: KKI, Leuven2, NYU, OHSU, Pitt, SDSU, Stanford, UCLA1, UM1, and Yale. ABIDE II data collections: ABIDEII-GU1, ABIDEII-KKI1, ABIDEII-KKI2, 
ABIDEII-NYU1, ABIDEII-OHSU1, ABIDEII-SDSU1, ABIDEII-UCD1 and ABIDEII-UCLA1. KKI and ABIDEII-KKI1, NYU and ABIDEII-NYU1, SDSU and ABIDEII-SDSU1, OHSU and 
ABIDEII-OHSU1 and UCLA1 and ABIDEII-UCLA1 were merged into one site across ABIDE I and ABIDE II collections
b FIQ was available for 362 males with ASD (2 missing from UM1, ABIDEII-SDSU1), 81 females with ASD (1 missing from ABIDEII-GU1), 407 neurotypical males (NT M) [3 
missing from ABIDEII-GU1 (N = 1), UM1 (N = 2)] and all 166 NT females (NT F)
c VIQ was available for 315 males with ASD (47 missing; KKI (N = 14), ABIDEII-OHSU1 (N = 22), OHSU (N = 9), ABIDEII-SDSU1 (N = 1); ABIDEII-UCLA1 (N = 1), 70 females 
with ASD [12 missing, ABIDEII-GU1 (N = 1), KKI (N = 4), ABIDEII-OHSU1 (N = 7)], 351 NT M [59 missing; ABIDEII-GU1 (N = 1), KKI (N = 23), OHSU (N = 15), ABIDEII-OHSU1 
(N = 20)], and 139 NT F [27 missing; KKI (N = 8), ABIDEII-OHSU1 (N = 19)]
d PIQ was available for 306 males with ASD [56 missing; ABIDEII-GU1 (N = 9), KKI (N = 14), OHSU (N = 9), ABIDEII-OHSU1 (N = 22), ABIDEII-UCLA1 (N = 1), UM1, (N = 1)], 
67 females with ASD [15 missing; ABIDEII-GU1 (N = 4), KKI (N = 4), ABIDEII-OHSU1 (N = 7)], 349 NT M [61 missing; ABIDEII-GU1 (N = 1), KKI (N = 23), OHSU (N = 15), 
ABIDEII-OHSU1 (N = 20), UM1, (N = 2)], 139 NT F [27 missing; KKI (N = 8), ABIDEII-OHSU1 (N = 19)]
e ADI-R Social scores were available for 317 males with ASD [45 missing; ABIDEII-GU1 (N = 1), Leuven2 (N = 10), NYU (N = 3), ABIDEII-NYU1 (N = 1), SDSU (N = 2), 
ABIDEII-UCD1 (N = 11), ABIDEII-UCLA1 (N = 14), UM1, (N = 2), Yale (N = 3)] and 68 females with ASD [14 missing; ABIDEII-GU1 (N = 1), ABIDEII-KKI1 (N = 2), Leuven2 
(N = 3), NYU (N = 1), Pitt (N = 1), ABIDEII-UCD1 (N = 3), ABIDEII-UCLA1 (N = 1), Yale (N = 2)]
f ADI-R Communication and RRB scores were available for 318 males with ASD [45 missing; ABIDEII-GU1 (N = 1), Leuven2 (N = 10), NYU (N = 2), ABIDEII-NYU1 (N = 1), 
SDSU (N = 2), ABIDEII-UCD1 (N = 11), ABIDEII-UCLA1 (N = 14), UM1, (N = 2), Yale (N = 3)] and 68 females with ASD [14 missing; ABIDEII-GU1 (N = 1), ABIDEII-KKI1 (N = 2), 
Leuven2 (N = 3), NYU (N = 1), Pitt (N = 1), ABIDEII-UCD1 (N = 3), ABIDEII-UCLA1 (N = 1), Yale (N = 2)]
g ADOS-Gotham Social-Affect was available for 261 males with ASD [101 missing; ABIDEII-GU1 (N = 27), ABIDEII-KKI1 (N = 13), Leuven2 (N = 10), NYU (N = 7), OHSU 
(N = 11), Pitt (N = 8), SDSU (N = 8), Stanford (N = 6), ABIDEII-UCLA1 (N = 5), UM1 (N = 6), Yale (N = 1)] and 55 females with ASD [27 missing; ABIDEII-GU1 (N = 6), ABIDEII-
KKI1 (N = 7), Leuven2 (N = 3), ABIDEII-OHSU1 (N = 1), Pitt (N = 4), Stanford (N = 1), ABIDEII-UCD1 (N = 1), UCLA1 (N = 1), UM1 (N = 3)]
h ADOS-Gotham RRB was available for 264 males with ASD [98 missing; ABIDEII-GU1 (N = 27), ABIDEII-KKI1 (N = 13), Leuven2 (N = 10), NYU (N = 7), OHSU (N = 11), Pitt 
(N = 8), SDSU (N = 8), Stanford (N = 3), ABIDEII-UCLA1 (N = 5), UM1 (N = 6), Yale (N = 1)] and 56 females with ASD [26 missing; ABIDEII-GU1 (N = 6), ABIDEII-KKI1 (N = 7), 
Leuven2 (N = 3), ABIDEII-OHSU1 (N = 1), Pitt (N = 4), ABIDEII-UCD1 (N = 1), UCLA1 (N = 1), UM1 (N = 3)]
i ADOS-Gotham calibrated severity scores [65] were available for 347 males with ASD (15 missing) and 77 females with ASD (5 missing)
j Attention Deficit Hyperactivity Disorder (ADHD; N = 63); anxiety disorder (N = 22); Oppositional Defiant Disorder (ODD; N = 17); mood disorder (N = 11); Tourettes/
Tics (N = 6); Obsessive–Compulsive Disorder (OCD; N = 6); enuresis (N = 8); encopresis (N = 4); developmental articulation disorder (N = 1); developmental dyslexia 
(N = 1); sensory integration disorder (N = 1)
k ADHD (N = 17); anxiety disorder (N = 7); ODD (N = 10); mood disorder (N = 2); OCD (N = 2); enuresis (N = 2); encopresis (N = 1). The three group means were 
compared with ANOVA tests (or Kruskal–Wallis test in the case of non-parametric mean FD) followed by post-hoc pairwise t test comparisons (or Mann–Whitney U 
tests in the case of non-parametric mean FD) when statistically significant (significance cut-off set at p < 0.05)

ABIDE I + II Sitesa ASD M (N = 362) ASD F (N = 82) NT M (N = 409) NT F (N = 166) Statistics Post‑hoc

N Mean (SD) [Range] Mean (SD) [Range] Mean (SD) [Range] Mean (SD) [Range]

Age 13 11.8 (2.6) [7–17.9] 11.7 (2.7) [7–18] 11.8 (2.6) [7.1–18.2] 11.4 (2.3) [7.8–17.4] F(3) = 1.18 p = 0.32

Full‑Scale  IQb 13 106 (16.6) [72–148] 104 (16.3) [73–147] 112 (12.7) [73–148] 114 (12.7) [80–144] F(3) = 19.24 p < 0.001 (ASD M = ASD F) <  
(NT M = NT F)

Verbal  IQc 12 107 (17.9) [57–180] 105 (17.3) [62–145] 114 (13.5) [73–147] 114 (14.4) [83–146] F(3) = 16.78 p < 0.001 (ASD M = ASD F) <  
(NT M = NT F)

Performance  IQd 12 106 (17.0) [59–157] 104 (17.1) [67–148] 109 (14.2) [62–147] 109 (13.2) [79–145] F(3) = 3.1 p = 0.03 (ASD M = ASD F) <  
(NT M = NT F)

Mean FD 13 0.11 (0.07) 
[0.02–0.39]

0.13 (0.09) 
[0.02–0.39]

0.09 (0.06) 
[0.02–0.39]

0.09 (0.06)  
[0.02–0.38]

H(3) = 29.6 p < 0.001 (ASD M = ASD F) <  
(NT M = NT F)

ADI-R

Sociale 11 19.7 (5.2) [4–30] 19.6 (5.5) [7–30] – – t(93) = 0.14 p = 0.89

Communicationf 11 15.6 (4.5) [2–25] 15.2 (5.0) [4–24] – – t(92) = 0.61 p = 0.54

RRBf 11 6.0 (2.4) [0–13] 5.8 (2.5) [0–12] – – t(96) = 0.51 p = 0.61

ADOS-2

Social‑Affectg 11 9.1 (3.7) [1–20] 8.7 (3.2) [4–18] – – t(87) = 0.97 p = 0.33

RRBh 11 3.2 (1.8) [0–8] 2.8 (1.5) [0–5] – – t(93) = 1.79 p = 0.08

CSS  totali 11 6.9 (2.1) [1–10] 6.8 (1.8) [2–10] – – t(93) = 0.11 p = 0.32

N N Statistics Post‑hoc

Comorbidity 5 99j 25k – – χ2
(1) = 0.2 p = 0.66

Psychoactive medi‑
cation

10 112 26 – – χ2
(1) < 0.01 p = 0.99
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analyses FIQ was also included as an additional nuisance 
regressor. We applied gaussian random field theory cor-
rection based on strict voxel-level threshold of Z > 3.1 as 
recommended by [62] and cluster level P < 0.01, given the 
assessment of five R-fMRI metrics in the same study (i.e., 
P 0.05/5 R-MRI metrics = 0.01).

Functional relevance of sex differences in autism
Post-hoc analyses were conducted to functionally char-
acterize the sex-by-diagnosis interaction result(s). First, 
to explore the cognitive domains implicated in the 
cluster(s), we quantified the percentage of its overlap with 
12 cognitive ontology maps [63] thresholded at P = 1e−5. 
We labelled these components based on the top five tasks 
each component recruits [2]. Second, we used the Neu-
rosynth Image Decoder (http://neuro synth .org/decod e/) 
[64] to visualize the terms most strongly associated with 
the significant cluster. After excluding anatomical (e.g., 
occipital) and redundant terms (synonyms [e.g., saccades 
and eye movements], plurals [e.g., object and objects] or 
noun/adjective/adverb equivalents [e.g., vision and vis-
ual]), we visualized the top 27 terms showing correlations 
with the cluster map between r = 0.64 and r = 0.10. Third, 
to explore potential clinical relevance of the significant 
cluster, we explored brain-behavior relationships as a 
function of sex within the autism group. Specifically, we 
ran a GLM examining the interaction between biologi-
cal sex and available ADOS calibrated severity total score 
(CSS) [65], as well as social-affect (SA) and restricted, 
repetitive behavior (RRB) subscores (see Additional file 1: 
Supplementary Methods) with the dependent variable(s) 
being the R-fMRI metric(s) extracted from the cluster 
mask(s) showing a statistically significant sex-by-diagno-
sis effect(s).

Robustness and replicability
Robustness
We assessed whether patterns of results from the dis-
covery analyses were observable with two other nuisance 
regression analytical pipelines that include commonly 
used data preprocessing steps. One pipeline included 
global signal regression (GSR) [66] which has often been 
used in autism studies; the other included Independ-
ent Component Analysis-Automatic Removal of Motion 
Artifacts (ICA-AROMA) [67] which is a relatively novel 
but increasingly utilized approach [46]. Given the scope 
of the present study, unlike prior work focusing on a 
wide range of individual preprocessing pipelines [46], 
we selected GSR and ICA-AROMA as examples of pre-
viously validated approaches thought to have impact on 
motion and physiological noise [45]. To assess robust-
ness of the results observed in discovery analyses, follow-
ing the voxel-level GLM, we extracted means from the 

masks corresponding to the same clusters that showed 
significant effects. These values were averaged across all 
the voxels in the cluster mask for a given R-fMRI met-
ric. We used them to implement a full regression model 
including the predictors of interest (sex, diagnosis and 
their interaction), as well as age and mFD as nuisance 
regressors and compute effect sizes as partial eta squared 
(ηp2) and their confidence intervals using the R-pack-
age ‘effectsize’. For visualization purposes we also used 
regressions (including sex, diagnosis, sex-by-diagnosis 
interaction, age, and mFD) to obtain the residuals of 
these mask-averaged values.

Replicability
Similarly, we assessed whether the group patterns 
observed in significant clusters identified in discov-
ery analyses were observed in two relatively large-scale, 
independent datasets selected from (a) the EU-AIMS 
Longitudinal European Autism Project (LEAP), a large 
multi-site European initiative aimed at identifying bio-
markers in autism [51, 52] and (b) the Gender Explora-
tions of Neurogenetics and Development to Advance 
Autism Research (GENDAAR) dataset collected by the 
GENDAAR consortium and shared in the National Data-
base for Autism Research [53]. For details on autism and 
NT inclusion and exclusion criteria for these samples, as 
well as our selection process, see Additional file 1: Sup-
plementary Methods [52, 53]. The resulting EU-AIMS 
LEAP (N = 309) R-fMRI datasets comprised N = 133 
males and N = 43 females with autism as well as N = 85 
NT males, and N = 48 NT females (see Additional file 1: 
Table  S1); resulting GENDAAR (N = 196) R-fMRI data-
sets comprised N = 43 males and N = 44 females with 
autism, as well as N = 56 NT males and N = 53 NT 
females (see Additional file 1: Table S2). For a compari-
son of demographic and clinical information between 
ABIDE, EU-AIMS LEAP and GENDAAR, see Table  S3, 
S4 and S5 in the Additional file  1. After applying the 
same ComBat and pre-processing pipeline as used in 
the ABIDE-based discovery analyses, we extracted each 
of the R-fMRI metrics means from the Z-maps. As for 
robustness, we extracted values for each R-fMRI metric 
from the masks corresponding to the clusters showing 
statistically significant effects in discovery analyses and 
computed the corresponding effect sizes and residuals 
using the same methods described above.

For both robustness and replicability, discovery find-
ings were determined to be robust and/or replicable (R+) 
based on two criteria: (1) the group mean difference(s) 
observed were in the same direction as those identi-
fied in the findings from discovery analyses [68] and (2) 
their effects were not negligible as defined by partial eta 

http://neurosynth.org/decode/
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squared (i.e,.ηp2 ≥ 0.01 any small, medium or large effects 
were R+) which is also consistent with prior work [41]. 
Finally, for consistency across analyses we also computed 
cluster-level effect sizes of the discovery findings using 
the same approach described above.

Results
Discovery analyses: ABIDE
Main effects of diagnosis
Analyses revealed a total of seven clusters showing a 
significant effect of diagnosis (voxel-level Z > 3.1; clus-
ter-level P < 0.01, corrected) for three of the five R-fMRI 
metrics: PCC-iFC (three clusters), VMHC (two clusters) 
and ReHo (two clusters); Fig. 1 and Additional file 1: Fig-
ure S2. These were mainly evident in anterior and poste-
rior regions of the default network (DN) across at least 
two or all three R-fMRI metrics. Autism-related hypo-
connectivity was present for: (a) PCC-iFC, VMHC and 
ReHo within bilateral paracingulate cortex and frontal 
pole, (b) VMHC and ReHo in the bilateral PCC and pre-
cuneus, and (c) ReHo in right insula and central oper-
culum (Fig. 1, Additional file 1: Figure S2 and Table S6). 

Autism-related hyper-connectivity was only evident 
for PCC-iFC with left superior lateral occipital cortex, 
temporal occipital fusiform cortex and occipital fusi-
form gyrus (Additional file  1: Figure S2). These results 
remained essentially unchanged when additionally con-
trolling for FIQ (Additional file 1: Figure S3). Further, to 
verify that these findings were not driven by particular 
acquisition site(s), post-hoc analyses computed group 
means for diagnostic subgroups for the R-fMRI metrics 
extracted at the cluster-level masks excluding one out of 
the 13 ABIDE sites at a time. The pattern of results was 
essentially unchanged (Additional file 2: Figure S5a).

Main effects of sex
Analyses revealed clusters showing statistically signifi-
cant main sex differences (voxel-level Z > 3.1; cluster-level 
P < 0.01, corrected), again for three R-fMRI metrics out 
of five in a total of 10 clusters: PCC-iFC (five clusters), 
VMHC (three clusters), and ReHo (two clusters). Find-
ings involved lateral and medial portions of the DN with 
bilateral PCC and precuneus showing the highest over-
lap (Fig.  1 and Additional file  1: Figure S2). Specifically, 

Fig. 1 Overlap across R‑fMRI metrics for main effects of diagnosis and sex. Upper panel: the surface inflated maps depict the extent of overlap 
across clusters showing significant main effects of diagnosis (left) and sex (right) across any of three resting state fMRI (R‑fMRI) metrics showing 
statistically significant effects (Z > 3.1, P < 0.01). Purple clusters represent areas of significant group differences emerging for only one of any of the 
three R‑fMRI measures, orange and yellow clusters indicate measures with overlap among 2 and 3 R‑fMRI measures (see Additional file 1: Figure S2 
for statistical maps of main effects for each R‑fMRI metric). Cluster masks are overlaid on inflated brain maps generated by BrainNet Viewer. Lower 
panel: For each of the yellow and orange clusters in panel A, the table lists the cluster’s anatomical label based on the Harvard Oxford atlas, the 
specific R‑fMRI metrics involved, and the group difference direction (ASD < NT or M < F in blue, ASD > NT or M > F in red). L left hemisphere, R right 
hemisphere, PCG/FP paracingulate cortex/frontal pole, ACC  anterior cingulate cortex, PCC/Prec posterior cingulate cortex/precuneus, ASD autism 
spectrum disorder, NT neurotypical, M males, F females
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regardless of diagnosis, relative to females, males showed 
decreased PCC-iFC with paracingulate cortex and frontal 
pole, right middle frontal gyrus, bilateral superior lateral 
occipital cortex and bilateral PCC and precuneus. Males 
also showed decreased VMHC and ReHo localized in 
PCC and precuneus. Decreased ReHo was also evident 
in the left angular gyrus and lateral occipital cortex in 
females relative to males (Fig.  1, Additional file  1: Fig-
ure S2 and Table S6). These results remained essentially 
unchanged when additionally controlling for FIQ (Addi-
tional file  1: Figure S3). Post-hoc analyses assessing the 
consistency of these findings across sites, as described 
above, revealed a similar pattern of results (Additional 
file 3: Figure S5b).

Sex‑by‑diagnosis interaction effect
Statistically corrected voxel-wise analyses (voxel-level 
Z > 3.1; cluster-level P < 0.01) revealed one cluster of sig-
nificant sex-by-diagnosis interaction only for VMHC 
which was localized in the dorsolateral occipital cortex 
(Fig. 2a and Additional file 1: Table S6). Post-hoc cluster-
level group means showed that NT females had higher 
VMHC than the three other groups, whereas autism 
females had lower VMHC than the three other groups 
(Fig.  2a). Similar to the main effects, results remained 
essentially unchanged when additionally controlling for 
FIQ (Additional file 1: Figure S3). Analyses assessing the 
consistency of these findings across sites, as described 
above, showed a similar pattern of results (Additional 
file 1: Figure S4).

Functional relevance of autism‑related sex differences
Post-hoc analyses to functionally characterize this 
VMHC sex-by-diagnosis interaction indicated that the 
VMHC cluster in superior lateral occipital cortex over-
lapped with cognitive maps involved in higher-order vis-
ual, oculomotor, cognitive flexibility and language-related 
processes (Fig. 3a). Further, as shown in Fig. 3b, the most 
common terms were primarily related to lower-order 
visual processing and higher-order visual cognition, such 
as ‘visuospatial’ and ‘spatial attention.’ To explore poten-
tial clinical relevance of the VMHC dorsolateral occipi-
tal cluster, we explored brain-behavior relationships as 
a function of sex, within the autism group using three 
available ADOS scores (calibrated severity total score, 
and non-calibrated social affect and RRB subscores; see 
Additional file 1: Supplementary Methods). Although not 
surviving a strict Bonferroni correction for multiple test-
ing (i.e., 0.05/3 = 0.02), an interaction effect was observed 
for ADOS social affect scores. It revealed that more 
severe social affect deficits (F(1,311) = 4.44, p = 0.036) were 
associated with decreased VMHC in females with autism 
(r = −  0.29), but not in males with autism (r = 0.03). 

Given that ABIDE data were aggregated and released 
when calibrated social affect scores [69] were not avail-
able to assess potential differences in language abilities 
and age, analyses were repeated after including ADOS 
module (ADOS Module 2 to 4) as a nuisance covariate: 
results remained unchanged (F(1,306) = 5.0, p = 0.026) as 
they did also after removing the few data with the less 
represented ADOS module 2 (see Additional file 1: Sup-
plementary Methods). There were no significant findings, 
with regard to the CSS total score and non-calibrated 
RRB sub-score (Fig. 3c), even at an exploratory statistical 
threshold of P < 0.05.

Robustness
The same pattern of results identified in discovery analy-
ses was observed when the datasets were pre-processed 
using GSR or ICA-AROMA, across the three R-fMRI 
metrics in all the clusters identified in the primary analy-
ses across main effects of diagnosis, sex and their inter-
action; effect size ranges from small to moderate as in 
discovery analyses (ηp2 range = 0.01–0.07; Fig. 2b, Fig. 4, 
Additional file  1: Table  S6 and Additional file  3: Figure 
S6).

Replicability
Main effects of diagnosis
Main effects of diagnosis showed higher replicability (i.e., 
non-negligible ηp2 effects showing a similar group mean 
pattern as observed in discovery analyses) in GENDAAR 
than in EU-AIMS LEAP. Specifically, across the three 
R-fMRI metrics that showed significant diagnostic group 
differences in discovery analyses, six of the seven clusters 
(86%) in GENDAAR were replicated (ηp2 range = 0.01–
0.04); only two of those seven (29%) were replicated in 
EU-AIMS LEAP (ηp2 range = 0.01–0.04). Nevertheless, 
clusters showing decreased ReHo in ASD versus NT 
across the insula and central operculum, as well as in the 
frontal pole were replicated across all samples (Fig.  4, 
Additional file  1: Table  S6 and Additional file  3: Figure 
S7a).

Main effects of sex
Across all three R-fMRI metrics, the main effects of sex 
observed in the discovery analyses were evident in both 
independent samples, for most clusters in the EU-AIMS 
LEAP (80%; 8/10) with effects size ranging from small to 
moderate (ηp

2 range = 0.01–0.06) and for half of the clus-
ters in GENDAAR (50%; 5/10), albeit with small effects 
(ηp2 range = 0.01–0.02) (Fig. 4, Additional file 1: Table S6 
and Additional file 3: Figure S7b). Notably, the pattern of 
typical sex differences localized along the default network 
midline (i.e., decreased VMHC, ReHo and PCC-iFC) was 
replicated across both independent samples (Fig. 4b).
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Sex‑by‑diagnosis interaction effect
The pattern of autism-related VMHC sex differences 
observed in discovery analyses in the superior lateral 
occipital cortex was observed in the EU-AIMS LEAP 

dataset, (ηp2 = 0.01) (Fig.  2c, Fig.  4, Additional file  1: 
Table  S6). In the GENDAAR dataset, while group 
means in males with autism, NT males and NT females 
showed a similar direction as in the ABIDE discovery 

Fig. 2 Sex‑by‑diagnosis interaction effect, its robustness and replicability. (a) On the right, surface maps show the cluster with a significant (Z > 3.1, 
P < 0.01) sex‑by‑diagnosis interaction for voxel‑mirrored homotopic connectivity (VMHC) resulting from discovery analyses in the ABIDE sample 
using the component‑based noise reduction (CompCor) pipeline. The statistical Z maps are overlaid on inflated brain maps generated by BrainNet 
Viewer. (b) The upper panels show the pattern of VMHC group means in males and females by each diagnostic group (ASD and NT) extracted 
from the same cluster in data pre‑processed following two alternative denoising pipelines, Global Signal Regression (GSR, left) and Independent 
Component Analysis‑Automatic Removal of Motion Artifacts (ICA‑AROMA, right). Results show a pattern similar to the those observed in discovery 
analyses with small to moderate effect sizes (ηp

2 range = 0.01–0.07). (c) The lower graph shows replicability in two independent samples: the 
Gender Explorations of Neurogenetics and Development to Advance Autism Research (GENDAAR) and the EU‑AIMS Longitudinal European Autism 
Project (LEAP). The pattern of results was replicable in the EU‑AIMS LEAP (N = 309) with a small effect size (ηp

2 = 0.01) and had a negligible effect size 
in GENDAAR (N = 196; ηp

2 < 0.01). For all graphs VMHC data are shown as residuals obtained after regressing out mean framewise displacement and 
age effects. L left, R right, A anterior, P posterior
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findings, females with autism differed in magnitude and 
in the direction of group differences, resulting in a neg-
ligible effect with ηp2 < 0.01 (Fig. 2c).

Discussion
We examined autism-related sex differences for intrin-
sic functional brain organization across multiple R-fMRI 
metrics in a large discovery sample of males and females 
with autism relative to age-group matched NT selected 

from the ABIDE repositories [22, 23]. Analyses revealed 
significant main effects of sex and diagnosis across intrin-
sic functional connectivity (iFC) of the posterior cingu-
late cortex, regional homogeneity and voxel-mirrored 
homotopic connectivity (VMHC) in several cortical 
regions. Notably, main effects converged along the mid-
line of the default network. In contrast, sex-by-diagnosis 
interactions were limited to VMHC in the superior lat-
eral occipital cortex. Placed in the context of sex and 

Fig. 3 Functional relevance of sex‑by‑diagnosis interaction in VMHC. a The radar plot shows the percentage (0–80%) of overlap between 
the voxels in the dorsolateral occipital cluster showing a significant VMHC sex‑by‑diagnosis interaction in discovery analyses and the 12 Yeo 
cognitive ontology probability maps [63] (probability threshold at P = 1e−5) for cognitive components C1–C12. As in Floris et al. [2], we labelled 
each component based on the top five tasks reported to be most likely recruited by a given component. b Word cloud based on the top 27 
terms showing correlations between r = 0.64 to r = 0.10 associated with the same VMHC cluster based on the Neurosynth Image Decoder. c 
Sex‑differential association between each individual’s VMHC at the cluster showing a significant sex‑by‑diagnosis interaction in primary analyses 
and available ADOS social‑affect uncalibrated sub‑scores in males and females with ASD. VMHC data are shown as residuals obtained after 
regressing out mean framewise displacement and age effects. While males showed no significant associations at corrected and uncorrected 
thresholds, females with lower dorsolateral occipital VMHC showed more severe social‑affect symptoms at a uncorrected statistical threshold 
(F(1,311) = 4.44, p = 0.036)
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diagnostic main effects on interhemispheric homotopic 
connectivity in cortical regions, this result suggests that 
atypical interhemispheric interactions are pervasive in 
autism but reflect a combination of sex-independent 
(i.e., main effect of diagnosis common across sexes) and 
sex-dependent (i.e., sex-by-diagnosis interaction) effects, 
each specific to a different functional cortical system. 
This sex-by-diagnosis interaction effect was robust to 
distinct pre-processing strategies as those observed for 
main effects. Further, despite the lack of a priori harmo-
nization for data acquisition among the three samples, 
this finding was replicable in the larger of the two inde-
pendent samples (i.e., EU-AIMS LEAP). On one hand, 
this, together with largely replicable main effects of sex 
with variable replicability of main diagnostic effects by 
sample, suggests that inter-sample replicability of R-fMRI 
can be feasible in autism when sources of variability in 
diagnostic groups are accounted for in samples sized 
properly to address such variability. On the other hand, 
our results highlight the urgent need to obtain multiple 
harmonized datasets properly powered to systematically 

address and understand sources of heterogeneity, includ-
ing and beyond the role of biological sex.

Sex‑dependent and sex‑independent atypical 
interhemispheric interactions in autism
VMHC reflects inter-hemispheric homotopic relations. 
The strength has been suggested to index coordinated 
cross-hemispheric processing: stronger VMHC indexes 
weaker hemispheric specialization and vice versa [33, 
70]. Several lines of evidence support the notion that 
the neurobiology of autism is related to atypical hemi-
spheric interactions, including homotopic connectiv-
ity and hemispheric lateralization [35, 71–80]. VMHC 
and functional hemispheric lateralization have also been 
shown to be sex-differential in NT [33, 81, 82]. The dor-
solateral occipital association cortex identified in our 
discovery analyses is known to serve hemispherically 
specialized processes, such as visuospatial coordination 
[83]. Thus, our findings of NT males’ VMHC in dorsolat-
eral occipital cortex being lower than that of NT females 
are consistent with the notion of increased hemispheric 

Fig. 4 Robustness and replicability summary. a The histogram summarizes the percentage of clusters showing a robust and replicable pattern 
of results as that observed in discovery analyses in the ABIDE sample for main effects of diagnosis (Dx; green; N = 7 clusters), sex (yellow; N = 10 
clusters) and their interaction (blue; N = 1 cluster) across three R‑fMRI metrics. All findings were robust to different preprocessing pipelines. 
Across R‑fMRI metrics, main sex effects were moderately (50%) to largely (80%) replicable across independent samples: Gender Explorations 
of Neurogenetics and Development to Advance Autism Research (GENDAAR) and the EU‑AIMS Longitudinal European Autism Project (LEAP), 
respectively. Replicability for main effects of diagnosis was largely replicable in GENDAAR (86%) and minimally replicable in EU‑AIMS LEAP (29%). 
The VMHC pattern observed for sex‑by‑diagnosis interaction in discovery analyses was replicated in EU‑AIMS LEAP only. b Surface conjunction 
maps show the clusters replicated in GENDAAR only (G, purple), EU‑AIMS LEAP only (E, blue) and in both samples (G and E, red) for each effect 
separately
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lateralization in this cortical region in NT males relative 
to NT females. In our data, females with autism instead 
showed even lower VMHC than NT males, while males 
with autism showed slightly higher VMHC than NT 
males. This pattern is indicative of ‘gender-incoherence’ 
[20] as males and females with autism display the oppo-
site pattern expected in NT per their biological sex. 
Findings of ‘gender incoherence’ have been reported 
in earlier neuroimaging studies of autism using differ-
ent modalities [3, 84, 85]. Among them, several R-fMRI 
studies explicitly focusing on detecting sex-by-diagnosis 
interactions (i.e., the regression model included a sex-by-
diagnosis interaction term) [3, 11] yielded a pattern of 
results consistent with ‘gender incoherence.’ In contrast, 
other studies [12–14] reported a pattern consistent with 
the ‘extreme male brain’ model [19]—i.e., a shift towards 
maleness in both females and males with autism. While 
the seemingly diverging conclusions of these two sets of 
studies may be attributed to methodological differences, 
such as the extent of brain networks explored and the 
statistical modelling employed, findings from our prior 
work suggest that both shifts towards either maleness or 
femaleness co-occur in the intrinsic brain of males with 
autism, in a network-specific manner [2]. However, such 
prior work did not include female data. Thus, by not 
directly assessing sex-by-diagnosis interactions, unlike 
the present study, results could not point to patterns 
affecting diagnostic differences between the sexes versus 
those that are common to autism across sexes [4]. This 
is relevant for efforts focusing on identifying underlying 
mechanisms. Findings resulting from sex-by-diagnosis 
interactions may shed light on sex-differential mecha-
nisms that are atypical in autism and may reflect sex-
specific susceptibility mechanisms. On the other hand, 
atypicalities common for both sexes may reflect factors 
central to the emergence of autism, regardless of whether 
they overlap with patterns known to be differential 
between sexes [86]. Interestingly, a recent study based on 
a sample selected from GENDAAR [16] revealed that the 
iFC between the nucleus accumbens (selected a priori) 
and a region of the dorsolateral occipital cortex partially 
overlapping with that identified by our VMHC analyses, 
was differentially modulated by the aggregate number of 
oxytocin receptor risk alleles in females with autism ver-
sus NT females and versus males with autism. Although 
VMHC was not directly tested in the said study [16], its 
result in dorsolateral occipital cortex is consistent with 
our observation of atypical sexual differentiation of this 
visual network region and, together, suggest the need for 
future whole-brain studies of oxytocin effects in autism.

Along with the sex-dependent autism patterns, our 
analyses found statistically significant main effects of 
diagnosis in inter-hemispheric interactions indexed by 

VMHC in distinct cortical circuits. These were localized 
along the midline of the DN (paracingulate/frontal cor-
tex consistently and PCC/precuneus) where main effects 
of PCC-iFC and ReHo also converged. Our results are 
consistent with prior reports of atypical intrinsic organi-
zation of the DN in autism [12, 23, 26, 87–89]. Together 
they support a common, sex-independent role of DN in 
autism. This is also highlighted by a recent autism neu-
rosubtyping study that identified three latent iFC factors, 
all sharing DN atypicalities along with their neurosub-
type-specific patterns [90]. Building on this evidence to 
disentangle the specific role of each of the factors affect-
ing autism in sex-independent and sex-dependent ways, a 
necessary next step is to engage in novel large-scale data 
collection efforts including more female data.

Robustness, replicability and sources of variability
The growing awareness of the replication crisis in neu-
roscience [91–93] motivated our analyses examining 
robustness and replicability of findings. While a com-
prehensive and systematic reproducibility assessment is 
beyond the scope of the present study, here we focused 
on examining whether the findings observed in the dis-
covery analyses were also seen after using different pre-
processing pipelines—robustness—as well as in fully 
independent, albeit of convenience samples (i.e., not har-
monized a priori with each other)—replicability. To this 
end, given the lack of consensus on quantitative metrics 
of replicability, we opted to use measures of effect size. 
These are considered complementary to null hypoth-
esis significance testing [94]. In the context of this study, 
given the use of convenience samples of different sizes, 
their selection was considered an advantageous and prac-
tical means to provide information on the magnitude of 
group differences in diagnosis and sex, as well as their 
interaction. Here, we considered findings to be robust 
and/or replicable for any non-negligible effects (i.e., 
ηp2 ≥ 0.01 [95]). We reasoned that given their distributed 
and heterogenous nature [6], atypicalities in the autism 
connectome can stem from a combination of differently 
sized non-negligible effects, as shown for autism in other 
biological domains such as genetics [96, 97].

With this in mind, across the two preprocessing 
methods examined here, the patterns of findings were 
consistent with those observed in discovery analyses 
across all R-fMRI metrics and effects. These robust 
results are consistent with a prior study by He and col-
leagues [46] reporting that differences in a wider range 
of pre-processing pipelines have marginal effects on 
variation in diagnostic group average comparisons. 
Our study confirms and builds on this earlier report by 
extending findings of robustness to sex group mean dif-
ferences and their interactions with diagnosis.
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A more nuanced picture emerged from the inter-
sample analyses as replicability varied by sample, across 
the effects and R-fMRI metrics examined. Specifically, 
while inter-sample main effects of sex were moder-
ately to largely replicable across R-fMRI metrics on 
both independent samples (~ 50 to 80% of the clus-
ters in GENDAAR and EU-AIMS-LEAP, respectively), 
replicability of diagnostic effects significantly varied 
by sample (86 to 29%) across R-fMRI metrics. This is 
at least in part consistent with findings by King et  al. 
[50] who showed that, depending on the R-fMRI fea-
ture examined, diagnostic group differences varied 
across samples. Even in this scenario, King et  al. [50] 
also reported that findings of decreased homotopic 
connectivity in autism were relatively more stable than 
other R-fMRI metrics. This observation, combined 
with the replicability of our VMHC sex-by-diagnosis 
interaction findings in the larger of the two independ-
ent samples (EU-AIMS LEAP), suggests that measures 
of homotopic connectivity may have specific biological 
relevance for autism. It is also possible that given the 
moderate to high test–retest reliability, VMHC is more 
suitable in efforts assessing replicability [98, 99].

The striking clinical and biological heterogeneity in 
autism should be considered as a major contributor 
to discrepancies in findings of studies focusing on the 
main effects of diagnostic group means contrasts/inter-
actions [100–103]. Against this background, we inter-
pret our replicability findings on diagnostic effects and, 
in turn, diagnosis-by-sex interactions. Inter-sample 
differences may have contributed to the more variable 
results of replicability on the diagnosis main effects. 
These may include autism symptom level, age, and IQ, 
albeit secondary analyses suggested that the exam-
ined IQ range did not substantially affect the pattern 
of discovery results. For example, the EU-AIMS LEAP 
sample was on-average older, had lower VIQ and most 
notably, lower symptom severity across all subscales of 
the ADOS and ADI-R than the ABIDE sample. On the 
other hand, the GENDAAR sample (which has greater 
number of replicable diagnostic mean group patterns) 
did not differ from ABIDE in these variables, except for 
mean age. Furthermore, a fact that is often neglected, is 
that the NT groups may also present with considerable 
sample heterogeneity between studies [100, 104]. For 
instance, our NT controls in the EU-AIMS LEAP sam-
ple had lower VIQ than both ABIDE and GENDAAR 
NT controls. This has potentially influenced the low 
replicability of diagnosis main effects in EU-AIMS 
LEAP.

In contrast, sex-by-diagnosis interaction effect on 
VMHC in the dorsolateral occipital cortex was replica-
ble in the larger sample, the EU-AIMS LEAP, but not in 

GENDAAR. Small samples introduce larger epistemic 
variability (i.e., greater variation related to known and 
unknown confounds) [105]. Increasing the number of 
subjects/data allows mitigating epistemic variability and, 
thus, capturing the underlying variability of interest. 
Thus, although the rate of replicability for the main effect 
of diagnosis in EU-AIMS LEAP was limited, account-
ing for biological sex, a known key source variability in 
autism, may have substantiated a replicable sex-by-diag-
nosis pattern in this larger sample. In line with sample 
size concerns, using four datasets sized between 36 and 
44 individuals selected from the ABIDE repository, He 
et al. [46] found low similarity rates of diagnostic group-
level differences on the strength of iFC edges in contrast 
with the largely similar pattern of results across pipe-
lines. Of note, unlike prior efforts [46, 50], we controlled 
for site effects within each of the samples (i.e., ABIDE, 
GENDAAR and EU-AIMS LEAP), using ComBat. Future 
large-scale harmonized data collections are needed to 
control and assess the impact of inter-sample variability. 
Taken together, these findings highlight that sample dif-
ferences can impact replicability.

Beyond clinical and biological sources of variation, 
samples may differ in MRI acquisition methods, as well as 
in approaches used to mitigate head motion during data 
collection and its impact on findings [106]. Adequately 
controlling for head motion remains a key challenge for 
future studies assessing inter-sample replicability. For 
the present study, we excluded individuals with high 
motion, retained relatively large samples with group 
average low motion (mean ± standard deviation of mFD 
range = 0.09–0.16 ± 0.06–0.10  mm), as well as included 
mFD at the second-level analyses as a nuisance covariate. 
Overall, the extent to which each sample-related factor 
affects replicability needs to be systematically examined 
in future well-powered studies. Only this type of studies 
will allow for emerging subtyping approaches to dissect 
heterogeneity by brain imaging features using a range 
of data-driven methods [107, 108], including normative 
modelling [72, 109, 110].

Inter-sample differences and methodological differ-
ences, beyond nuisance regression, may have contributed 
to some differences in findings between the present and 
earlier studies, conducted with independent or partially 
overlapping samples [11, 23, 41]. For example, Alaerts 
et  al. [11] also examined sex-by-diagnosis interaction 
in PCC-iFC in a dataset selected from ABIDE I only. 
Although their pattern of results was consistent with the 
‘gender incoherence’ model, the resulting circuit(s) did 
not involve the dorsolateral occipital cortex as identified 
with VMHC in the present study. Along with differences 
in samples selected from the same data repositories, 
other  methodological choices may also affect results. 
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For example, prior studies differed with the present one 
in the inclusion of sex-by-diagnosis interaction [17], the 
extent of the whole-brain voxel-based analyses [15, 16], 
or the statistical threshold utilized [23]. Nevertheless, it 
is remarkable that even in light of these differences, con-
sistent results have emerged including the overarching 
atypical inter-hemispheric interactions in autism, and 
sex-dependent and sex-independent atypical intrinsic 
brain function across distinct functional networks.

Limitations
Along with the inter-sample differences resulting from 
the lack of sufficiently available harmonized multi-site 
replication datasets in the field, other limitations of this 
study should be addressed in future efforts. One regards 
the lack of measures differentiating the effects of sex 
versus those of gender so as to disentangle their rela-
tive roles (e.g., gender-identity and gender-expression) 
in the intrinsic brain properties [111]. Further, in-depth 
cognitive measures to directly characterize the role of 
VMHC findings were not available. Additional behavio-
ral measures are needed to establish whether our result 
in VMHC of the dorsolateral occipital cortex mainly 
applies to low-level (bottom-up) visual processing dif-
ferences or higher-level (top-down) attentional/con-
trolled processes in males and females with autism. As 
a neurodevelopmental condition, autism shows striking 
inter-individual differences in clinical and developmental 
trajectories, as well as outcomes. Thus, age may influence 
symptom presentation [112, 113] and neurobiology [13, 
110, 114]. Despite the considerable size of the samples 
available for this study, it is still difficult to sufficiently 
cover a broad age range across both males and females 
and diagnostic groups across contributing sites, and to 
evaluate age effects appropriately. Even larger cross-
sectional samples are needed to derive meaningful age-
related information that ultimately requires confirmation 
in longitudinal studies. Such longitudinal studies would 
allow to examine the potential impact of puberty and 
related surge of sex steroid hormones reported in NT 
boys and girls [115], in autism specifically. Here, we have 
no direct measure of puberty other than age, but future 
studies should aim to include such measures. Further, 
the value of a large-scale and publicly available multi-site 
resource such as ABIDE also comes with unavoidable site 
differences which must be considered in data selection, 
analyses and interpretation of results. Although residual 
site-related effects may have remained in findings even 
after using the novel Bayesian approach for correcting 
for batch-effects, replicability in independent samples 
suggest that effects are not simply driven by site vari-
ability. These results are consistent with earlier reports of 
reproducible imaging biomarkers even when accounting 

for inter-site differences in multisite datasets such as the 
ABIDE I repository [47]. Finally, despite the advantages 
of effect sizes over p-value when comparing indepen-
dently collected samples of different sizes and potentially 
different variances, it is important to acknowledge that 
they are not without limitations [116] and, thus, should 
be interpreted with caution. Similar to p values, they are 
influenced by sample sizes and have the equivalent risks 
of p-hacking. Finally, the standard errors or effect sizes 
can be large—a concern we addressed by reporting their 
confidence intervals.

Conclusions
The present work revealed sex differences in the intrin-
sic brain of autism, particularly in dorsolateral occipi-
tal interhemispheric interactions, which were robust 
to pre-processing pipeline decisions and replicable in 
the larger of the two independent samples. While dif-
ferences in nuisance regression pipelines have little 
influence on the consistency of findings, sample het-
erogeneity represents a challenge for replicability of 
findings. Lateralized cognitive functions and cross-
hemispheric interactions should be further explored in 
relation to sex differences in autism while addressing 
this challenge with future harmonized data acquisition 
efforts with even larger samples.
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