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Abstract 

Background: Sleep disturbances in autism spectrum disorder (ASD) represent a common and vexing comorbidity. 
Clinical heterogeneity amongst these warrants studies of the mechanisms associated with specific genetic etiologies. 
Duplications of 15q11.2‑13.1 (Dup15q syndrome) are highly penetrant for neurodevelopmental disorders (NDDs) 
such as intellectual disability and ASD, as well as sleep disturbances. Genes in the 15q region, particularly UBE3A and a 
cluster of  GABAA receptor genes, are critical for neural development, synaptic protein synthesis and degradation, and 
inhibitory neurotransmission. During awake electroencephalography (EEG), children with Dup15q syndrome demon‑
strate increased beta band oscillations (12–30 Hz) that likely reflect aberrant GABAergic neurotransmission. Healthy 
sleep rhythms, necessary for robust cognitive development, are also highly dependent on GABAergic neurotransmis‑
sion. We therefore hypothesized that sleep physiology would be abnormal in children with Dup15q syndrome.

Methods: To test the hypothesis that elevated beta oscillations persist in sleep in Dup15q syndrome and that NREM 
sleep rhythms would be disrupted, we computed: (1) beta power, (2) spindle density, and (3) percentage of slow‑
wave sleep (SWS) in overnight sleep EEG recordings from a cohort of children with Dup15q syndrome (n = 15) and 
compared them to age‑matched neurotypical children (n = 12).

Results: Children with Dup15q syndrome showed abnormal sleep physiology with elevated beta power, reduced 
spindle density, and reduced or absent SWS compared to age‑matched neurotypical controls.

Limitations: This study relied on clinical EEG where sleep staging was not available. However, considering that clini‑
cal polysomnograms are challenging to collect in this population, the ability to quantify these biomarkers on clinical 
EEG—routinely ordered for epilepsy monitoring—opens the door for larger‑scale studies. While comparable to other 
human studies in rare genetic disorders, a larger sample would allow for examination of the role of seizure severity, 
medications, and developmental age that may impact sleep physiology.

Conclusions: We have identified three quantitative EEG biomarkers of sleep disruption in Dup15q syndrome, a 
genetic condition highly penetrant for ASD. Insights from this study not only promote a greater mechanistic under‑
standing of the pathophysiology defining Dup15q syndrome, but also lay the foundation for studies that investigate 
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Background
Neurodevelopmental disorders (NDDs), such as autism 
spectrum disorders (ASD), intellectual disability (ID) 
and attention deficit-hyperactivity disorder (ADHD), 
affect 1–2% of the general population. Sleep problems are 
highly prevalent in NDDs [1, 2], with 50–95% of children 
meeting criteria for a sleep disorder at a behavioral level 
[3–5]. Studies have estimated that sleep disturbances 
occur in 40–80% of children with ASD [6–9], with poor 
sleep being associated with greater autism severity, cog-
nitive impairment and behavioral challenges [10, 11]. 
Healthy sleep physiology plays an essential role in over-
all health and cognitive development [12–17], and sleep 
micro- and macrostructures—particularly spindles and 
slow wave sleep (SWS)—are critical for learning, mem-
ory consolidation and overall intellectual ability [18–22]. 
Abnormal spindle number and morphology are associ-
ated with epilepsy, as well as with neurodevelopmental 
and neuropsychiatric disorders [23–28]. Deficits in SWS 
have been reported in genetic forms of ASD and NDDs 
such as Rett syndrome [29, 30], as well as in non-syndro-
mic ASD [31]. Specific sleep microarchitecture altera-
tions in ASD, however, have been inconsistent likely  as 
a result of the heterogeneity of the condition and differ-
ences in analytic techniques.

Maternally derived duplications of chromosome 
15q11.2-13.1 collectively represent one of the most com-
mon copy number variants associated with NDDs [32, 
33] and result in a clinical syndrome (Dup15q syndrome) 
that includes delays across developmental domains, high 
penetrance for ASD, and epilepsy [34–37]. Two primary 
duplication types result in the syndrome: (1.) an intersti-
tial duplication or trisomy, resulting in one extra copy of 
the 15q region that lies on the same chromosome arm, 
or (2.) an isodicentric duplication, resulting in two extra 
copies of the region on a supernumerary chromosome 
[35]. Several genes within the 15q critical region are over-
expressed in Dup15q syndrome, notably: (1.) UBE3A, 
a gene that encodes a ubiquitin protein ligase which is 
imprinted in neurons [38, 39] and regulates synaptic 
development and function [40–43], and (2.) a cluster of 
gamma-aminobutyric acid type A receptor  (GABAAR) 
genes, GABRB3, GABRA5, and GABRG3, which encode 
the β3, α5 and γ3 receptor subunits, respectively. Several 
studies have shown that both in humans and in mouse 
models, mutations in the  GABAAR genes result in autism 
and epilepsy phenotypes [44–48]. Loss of neuronal 

expression of the maternally inherited UBE3A gene due 
to deletions of the 15q critical region results in Angelman 
Syndrome (AS) [49, 50], which has some clinical overlap 
with Dup15q syndrome namely ID, ASD, and epilepsy.

On awake electroencephalography (EEG), children with 
Dup15q syndrome generate a prominent electrographic 
biomarker, defined by increased beta band oscillations 
(12–30  Hz), which distinguishes them from typically 
developing children as well as from those with non-syn-
dromic ASD [36, 51, 52]. This EEG signature resembles 
the pattern seen in patients taking benzodiazepines or 
other positive allosteric modulators of  GABAA receptors, 
suggesting that this biomarker reflects aberrant GABAe-
rgic neurotransmission [53–55]. As a follow-up to the 
quantification of these abnormal awake EEG oscillations, 
we asked whether sleep physiology was also affected in 
Dup15q syndrome. We quantified the following metrics 
from overnight clinical EEG and polysomnogram (PSG) 
recordings: (1) beta band oscillations, (2) spindle den-
sity and (3) percentage of SWS, and compared them with 
age-matched neurotypical (NT) controls. Disruptions in 
these sleep rhythms can significantly affect overall quality 
of life and functionality, while exacerbating the severity 
of existing developmental and cognitive problems asso-
ciated with NDDs. We hypothesized that sleep physiol-
ogy—including beta power in sleep, sleep spindles, and 
SWS—would be abnormal in children with Dup15q syn-
drome. Findings from this study could lay the foundation 
for future investigation of the relationship between sleep 
EEG and cognition and the identification of potential 
pharmacological targets to improve not only sleep, but 
overall neurodevelopmental outcomes, in this syndrome.

Methods
Study participants
The study consisted of 27 participants. Overnight clinical 
EEG data on 25 participants were collected at the Uni-
versity of California, Los Angeles (UCLA) Ronald Reagan 
Medical Center, and overnight PSGs were collected from 
2 participants at the Boston Children’s Hospital (BCH). 
All data were retrospectively identified. Fifteen record-
ings—including 13 clinical EEGs and EEG data extracted 
from 2 PSGs—were obtained from children with Dup15q 
syndrome, ranging in age from 9  months to 13  years. 
Twelve clinical EEGs were from age-matched NT chil-
dren, ranging in age from 7 months to 14 years. The ages 
of the children in the two groups did not significantly 

the association between sleep and cognition. Abnormal sleep physiology may undermine healthy cognitive develop‑
ment and may serve as a quantifiable and modifiable target for behavioral and pharmacological interventions.
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differ, averaging 5.69  years in Dup15q syndrome and 
5.78 years in NT controls. Each child with Dup15q syn-
drome had a confirmed genetic diagnosis of the syn-
drome and was either clinically referred through the 
Dup15q clinic at UCLA or recruited through the UCLA 
Intellectual Disability and Development Research Center 
(IDDRC). Participants with Dup15q syndrome from 
BCH were referred by a healthcare provider to the BCH 
Pediatric Sleep Laboratory to evaluate clinical concerns 
for restless sleep, sleep disordered breathing or periodic 
limb movements of sleep. Details of age, sex, duplication 
type, epilepsy status, frequency of spikes and medications 
for all children with Dup15q syndrome in the study can 
be found in Table 1.

Based on direct assessments using the Autism Diagnos-
tic Observation Schedule (ADOS), obtained from a prior 
study [56], or on clinical reports of previously conducted 
assessments, all 15 Dup15q syndrome participants in 
this study met criteria for ASD. The NT control group 
included children that were admitted to UCLA for EEG 
evaluation of paroxysmal events or spells that were ulti-
mately determined to be non-epileptic in the context of 
normal EEG results. These participants had no historical 
or contemporaneous diagnoses of developmental delay, 
epilepsy, or other neurological disorders.

EEG data acquisition
All overnight EEG data were retrospectively identified in 
accordance with the Institutional Review Board. EEGs 
from UCLA were acquired from the Pediatric Neuro-
physiology Laboratory at the UCLA Ronald Reagan 
Medical Center and were recorded at a sampling rate of 
200  Hz, utilizing a standard 10–20 montage, 21 chan-
nel gold disc electrode placement recording set up on 
a Neurofax Polysmith DMS 11.0 Build 8093 with 921 
amplifiers (Nihon Kohden America Inc, Irvine, CA). Data 
from BCH were recorded at a sampling rate of 200  Hz 
using XLTEK PSG system and Natus SleepWorks soft-
ware (Natus Medical Inc., San Carlos, CA). Data were 
extracted and converted into European Data Format 
(EDF) for analysis.

EEG data processing and analysis
Overnight EEG data were reviewed for timestamps, and 
the recording between approximately 10 p.m. and 5 a.m. 
was extracted. In the absence of formal sleep staging on 
clinical EEGs, this window was selected in order to main-
tain a comparable duration of potential sleep epochs 
between the two groups. Therefore, about 7  h of con-
tinuous overnight EEG recording were included for all 
participants, and the duration of the recording was not 

Table 1 Dup15q syndrome participant characteristics

This table describes the characteristics of participants in the Dup15q syndrome cohort. Details on age, gender, epilepsy status and medications were extracted from 
participant background questionnaires, and duplication type was extracted from participant genetic reports. The percentage of sleep occupied by spike-waves was 
reported as the spike-wave index in clinical EEG reports and was verified by a board-certified pediatric epileptologist

Dosages were not available for all the medications listed, hence not included in the table

Age (months) Gender Duplication type Epilepsy (active) Spike-wave index in 
sleep

Medications (generic)

105 Female Isodicentric No < 35% Risperidone
Melatonin

23 Female Isodicentric No < 35% None

108 Female Isodicentric No < 35% None

18 Male Interstitial No < 35% None

35 Male Isodicentric No < 35% None

54 Male Isodicentric No < 35% None

68 Female Isodicentric Yes 45–50% Clobazam
Topiramate

137 Male Isodicentric Yes 40–45% Topiramate

73 Female Interstitial Yes < 35% Lamotrigine
Guanfacine

19 Male Isodicentric Yes 35–40% Vigabatrin
Prednisolone

57 Female Isodicentric Yes < 35% None

9 Female Isodicentric Yes < 35% Levetiracetam
Phenobarbital

55 Male Isodicentric Yes 65–70% None

108 Male Isodicentric Yes < 35% None

156 Male Isodicentric Yes 40–45% None
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significantly different between the two groups (Dup15q, 
7.03 h vs. NT, 7.06 h).

Raw EEG data were processed using the EEGLAB [57] 
software toolbox for MATLAB. Data were high-pass fil-
tered at 1.0 Hz and low-pass filtered at 50 Hz with zero-
phase FIR filters and forward–backward filtering. EEG 
channels with poor signal quality were automatically 
removed and interpolated with the following criteria: 
(1) spectral power between 1 and 50  Hz that was three 
standard deviations above or below that of other chan-
nels, (2) channels with flat signals (i.e. zeros) longer than 
5 s, (3) channels that were poorly correlated (r < 0.7) with 
their reconstructed versions based on adjacent channels, 
(4) channels with line noise power four standard devia-
tions higher than their signals, using clean_rawdata() 
function in EEGLAB. The interpolated EEG data were 
then re-referenced to the common average reference.

The power line noise (i.e. 60 Hz) was further removed 
using CleanLine in EEGLAB [58]. Artifact subspace 
reconstruction (ASR) was applied using clean_asr() func-
tion (σ = 20) [59] to automatically remove and interpo-
late non-stationary, high-amplitude bursts such as eye 
blinks, eye movement activity, possible complex epilep-
tiform activity as well as motion artifacts. Independent 
component analysis (ICA) was performed, and an auto-
matic independent components (IC) classifier, ICLabel 
[60], was used to separate and label ICs into seven cat-
egories. The ICs labeled as muscle, eye, heart, line noise, 
and channel noise with probability higher than 0.5 were 
rejected. Considering the performance variability in 
applying ICLabel to children and infant EEG versus adult 
EEG [61], the ICLabel output was visually inspected 
and reviewed. The final cleaned channel signals were 
reconstructed using the remaining ICs. Time–frequency 
analysis was performed for each channel of the cleaned 
overnight EEG using spectrogram() function in MATLAB 
with a Hanning window of 60-s and a 30-s overlap. The 
mean power at beta (12–30 Hz) and delta (1–4 Hz) band 
oscillations was further obtained for each epoch.

Raw EEG data were also manually reviewed by a 
board-certified pediatric epileptologist who was blind 
to diagnosis and group status. Artifacts, including eye 
blinks, eye movements, muscle, movement, electrocar-
diogram, and electrode artifacts, were visually identi-
fied. Sleep staging was performed on all clinical EEGs 
based on scoring criteria from the American Academy 
of Sleep Medicine (AASM) and was verified on PSG data 
in order to distinguish between wakefulness, non-rapid 
eye movement (NREM) sleep and rapid eye movement 
(REM) sleep. A visual overview of sleep stages and nor-
mal sleep architecture can be found in Additional file  1 
and Additional file 2. Non-rapid eye movement (NREM) 
sleep cycles are categorized into stages including: N1, 

the lightest stage of sleep characterized by a drop-
out of eye, muscle and movement artifacts, as well as 
emergence of low-amplitude mixed frequency activity 
and vertex waves; N2, a deeper sleep stage character-
ized by the presence of sleep spindles and K-complexes; 
and N3 or slow-wave sleep (SWS), the deepest stage of 
sleep, characterized by the presence of slower frequen-
cies (0.5–2  Hz) and high-amplitude signals. REM sleep, 
a stage characterized by vivid dreaming, is defined by 
mixed frequency brain wave activity similar to that seen 
during wakefulness with overriding eye movement arti-
fact. REM sleep was not evaluated in this study given that 
electrooculogram (EOG) leads  are not placed by default 
when recording  clinical EEGs, thus limiting our ability 
to definitively score this sleep stage according to AASM 
criteria. The awake state was determined by the pres-
ence of eye, muscle and movement artifacts. Total wake 
and sleep time were aggregated but not independently 
analyzed given that not all arousals from sleep are enu-
merated and staged as wakefulness per AASM criteria, 
therefore hindering our ability to calculate these param-
eters with precision.

Spindle detection
Sleep spindles were quantified and visualized using 
YASA (Yet Another Spindle Algorithm), a Python-based 
toolbox for automated multi-channel spindle detec-
tion [62]. Spectral power in the spindle frequency range 
(11–16 Hz) was first obtained relative to the total power 
in the broadband frequency (1–30  Hz) for all channels, 
using a 2-s window with a 200-ms overlap. Only the win-
dows in which 20% of the signals’ total power was con-
tained within the spindle frequency range were kept, in 
order to avoid false detection due to artifacts [62]. The 
selected windows of spindle activity were then reviewed 
for morphological features. Spindles that were less than 
500  ms apart were merged, and those that were < 0.5  s 
or > 2.0  s in duration were eliminated. In order to avoid 
double counting, spindles detected with an initiation 
interval of < 300 ms were considered to be a single event. 
Throughout the hours of 10 p.m. and 5 a.m. across study 
participants, spindles were identified and quantified in all 
artifact-free sleep epochs with durations of at least 2 min. 
Spindle density was calculated as the number of spindles 
per minute for each epoch and averaged across epochs 
for each subject.

Spindles were also quantified manually. Similar to the 
automated method, spindles were visually identified and 
quantified in all artifact-free sleep epochs with durations 
of at least 2 min throughout the same hours of 10 pm and 
5  a.m. Spindle density was calculated as the number of 
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spindles per minute for each epoch and averaged across 
epochs for each subject.

Slow-wave sleep analysis
Delta power (1–4  Hz) was computed for every 30-s 
epoch of the cleaned overnight EEG. SWS was automati-
cally identified as epochs with higher delta power relative 
to non-SWS periods. Specifically, the non-SWS peri-
ods were identified as the  50% of all 30-s epochs in the 
sleep recording with the lowest delta power. The mean 
and standard deviation of the delta power over the non-
SWS periods were computed. For the whole sleep record-
ing, “high-delta” epochs were identified in which delta 
power was higher than one standard deviation above 
the mean non-SWS delta power. To avoid false positives 
(i.e., from sporadic motion artifacts), the final SWS peri-
ods excluded all the epochs with less than 32 consecutive 
high-delta epochs (i.e., 16  min) with methods based on 
a prior study [29]. The percentage of the amount of time 
spent in high-delta epochs across the 7  h of overnight 
EEG recording was defined as percent SWS for the study.

SWS also was manually quantified based on scoring 
criteria from the AASM, defined by 0.5–2 Hz slow waves 

of at least 75  μV occupying at least 20% of consecutive 
30-s epochs [63]. The duration of each N3 sleep epoch 
was calculated across the 7 h of overnight EEG. Percent-
age of SWS was calculated as the total amount of time 
each subject spent in N3 sleep as a function of total sleep 
time.

All statistical analyses were performed using GraphPad 
Prism 8 software. Student’s t tests were used to compare 
spectral power, spindle density and percentage of SWS 
between groups. In all the figures, the asterisk indicates 
p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.

Results
Manual evaluation of sleep architecture
Manual staging of sleep EEGs indicated that all chil-
dren with Dup15q syndrome demonstrated progression 
through NREM sleep cycles N1 and N2. Excessive beta 
oscillations were identified throughout the sleep record-
ings in all children with Dup15q syndrome but fluctuated 
between sleep stages, notably with a qualitative drop in 
stage N2. Vertex waves were observed in stages N1 and 
N2 (Fig. 1A). Sleep spindles and K-complexes emerged in 
stage N2 (Fig. 1B). Two children with Dup15q syndrome, 

Fig. 1 Sleep stages (N1 to N3) in children with Dup15q syndrome. Representative 9‑s traces of continuous sleep EEG recording from children with 
Dup15q syndrome depicting vertex waves (field highlighted by blue rectangle) during stage N1 in a 35‑month‑old patient (A), K‑complexes (broad 
field highlighted by blue rectangles) during stage N2 juxtaposed with sleep spindles (arrow) in a 19‑month‑old patient (B), asynchronous spindles 
in the right (hollow arrow) and left (solid arrow) frontocentral electrodes during stage N2 in a 54‑month‑old patient (C) and slow‑wave sleep during 
stage N3 in a 35‑month‑old patient (D)
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aged 54  months and 156  months, demonstrated mark-
edly abnormal sleep spindles—the former with frequent 
hemispheric asynchrony of sleep spindles (Fig. 1C), and 
the latter with poor spindle morphology and attenuated 
spindle voltages. However, not all children entered stage 
N3, as they did not meet AASM frequency criteria for 
slow waves. Of those who achieved SWS (Fig.  1D), half 
demonstrated fewer N3 cycles and reduced aggregate 
duration of N3 compared to NT controls.

Epileptiform activity was noted in 9 children with 
Dup15q syndrome and in all children with dual diagno-
ses of Dup15q syndrome and epilepsy. Observed epilep-
tiform activity varied widely between participants and 
included generalized spike-wave discharges; focal or 
multifocal spikes, sharp waves and spike-waves; and focal 
or generalized paroxysmal fast activity.

Beta oscillations in sleep
Time–frequency analysis of the overnight EEG record-
ings revealed that children with Dup15q syndrome had 
visible and quantifiable beta oscillations (12–30  Hz) 
throughout sleep. Figure  2 shows examples of time–
frequency plots from a child with Dup15q syndrome 
(Fig. 2A) and a child in the NT control group (Fig. 2B). 
Beta power was much higher and changed over time in 
the EEG recording from the child with Dup15q syndrome 
(Fig. 2C) compared to the child in the NT control group 

(Fig.  2D). Additional representative plots from partici-
pants with Dup15q syndrome are included in Additional 
file 3A, B.

Mean beta power calculated across the overnight 
recording was significantly different between the groups. 
Although variable across individuals, in all three spatial 
locations (Fig.  3B), beta power was significantly higher 
(frontal: p = 0.001; central: p = 0.01; occipital: p = 0.0009) 
in children with Dup15q syndrome compared to age-
matched NT controls (Fig. 3C). Within the Dup15q syn-
drome cohort, there were no differences in beta power 
based on the presence of epilepsy or between duplication 
types.

Spindles
Both the automated spindle detection algorithm and 
manual spindle detection revealed that children with 
Dup15q syndrome had significantly fewer spindles 
(p < 0.0001) compared to age-matched NT controls 
(Fig.  4A, B). Spindle density did not correlate with age, 
and there were no differences in duration or amplitude of 
spindles between groups. Within the Dup15q syndrome 
cohort, there were no significant differences in spindle 
density based on the presence of epilepsy or between 
duplication types.

Fig. 2 Persistent overnight beta oscillations in Dup15q syndrome. Time–frequency plot derived from 7 h of overnight sleep EEG from a 
19‑month‑old representative Dup15q syndrome participant (A) and a 19‑month‑old representative neurotypical (NT) participant (B). Beta power 
(absolute power) dynamics plotted across the night in the 19‑month‑old participant with Dup15q syndrome (C) and in the 19‑month‑old NT 
participant (D)
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Fig. 3 Elevated beta power in sleep in children with Dup15q syndrome. 6 s of continuous sleep EEG recording from a 19‑month‑old Dup15q 
participant (A). A scalp map showing standard 10–20 EEG electrode placements on the scalp, with channel groups of interest highlighted (frontal: 
yellow, central: red and occipital: blue) (B). Dot plots of absolute beta power (12–30 Hz) averaged across overnight sleep EEG, in the Dup15q 
syndrome group (turquoise: participants with no epilepsy, orange: participants with epilepsy) and the NT group (black), plotted for each channel 
group (C)

Fig. 4 Reduced sleep spindle density in children with Dup15q syndrome. Dot plots of average spindle density in participants in the Dup15q 
syndrome group (turquoise: participants with no epilepsy, orange: participants with epilepsy) and the NT group (black), using automated spindle 
detection (A) and manual spindle detection (B) methods
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SWS
Quantitative analysis of SWS revealed markedly reduced 
SWS in children with Dup15q syndrome. There were sig-
nificant group differences in the time spent in each dis-
crete segment of SWS, the total amount of time spent 
in high delta cycles (Fig. 5A) and the percentage of SWS 
in all three channel groups (frontal, p < 0.0001; central, 
p = 0.0003; occipital, p = 0.0005), based on automated 
SWS detection. These differences indicated that children 
with Dup15q syndrome spent significantly less time in 
SWS compared to age-matched NT controls (Fig. 5B).

Manual quantification of SWS was consistent with 
automated SWS detection, revealing that 9 out of 15 chil-
dren within the Dup15q syndrome group did not demon-
strate N3 SWS and that children with Dup15q syndrome 
showed significantly less time in SWS (p < 0.0001) com-
pared to the NT controls (Fig.  5C). Within the Dup15q 
syndrome cohort, there was no difference in the percent-
age of SWS based on the presence of epilepsy or between 
duplication types.

Discussion
In this study, we quantified parameters of sleep physi-
ology in children with duplications of 15q11.2-13.1, a 
genetic NDD highly penetrant for ASD, and compared 

them to age-matched typically developing children. We 
hypothesized that elevated beta oscillations—previously 
described in awake EEGs in children with Dup15q syn-
drome—would persist in sleep, and that NREM sleep 
rhythms that are highly dependent on GABAergic syn-
aptic transmission would be disrupted. Indeed, we found 
that sleep physiology is abnormal in Dup15q syndrome, 
characterized by excessive beta oscillations, reduced 
spindle density, and reduced or absent SWS. Given the 
fact that most children with Dup15q syndrome undergo 
clinical overnight EEGs for epilepsy monitoring, findings 
from this study could guide broader examination and 
quantification of sleep parameters and inform modifiable 
targets of intervention, particularly with pharmacological 
agents that modulate GABA neurotransmission.

Abnormal sleep physiology in NDDs
Abnormal sleep rhythms have been reported in sev-
eral neurodevelopmental and neuropsychiatric condi-
tions. Deficits in sleep spindles and REM sleep have been 
described and quantified in children with non-syndromic 
ASD [15, 26, 64–66]. Additionally, genetic syndromes 
highly penetrant for ASD—including Dup15q, Rett, and 
Angelman syndromes—have shown some unique and 
some overlapping features in their sleep physiology. In a 

Fig. 5 Reduced SWS in children with Dup15q syndrome. Delta (1–4 Hz) power dynamics across 7 h of overnight EEG from a 19‑month‑old Dup15q 
syndrome participant (A) and a 19‑month‑old NT participant (B), scored for high delta cycles (black) and low delta cycles (blue). Dot plots of 
percentage of SWS in participants in the Dup15q syndrome group (turquoise: participants with no epilepsy, orange: participants with epilepsy) 
and the NT group (black), using automated SWS quantification (C) and manual SWS quantification (D) methods. Different channel groups are 
highlighted in different colors (frontal: yellow, central: red and occipital: blue)
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retrospective, descriptive clinical overnight EEG study 
of children with Dup15q syndrome, electrical status epi-
lepticus during sleep (ESES), alpha-delta patterns, and 
periods of high amplitude paroxysmal fast activity were 
described in approximately 1/3 of patients [67]. Poorly 
developed spindles and K-complexes, as well as altered 
SWS have been shown in Rett syndrome [29, 68, 69] and 
AS [70, 71].

NREM sleep micro- and macrostructures in Dup15q 
syndrome
Changes in spindle activity during development are asso-
ciated with neural maturation. Ontogenesis of sleep spin-
dles in typically developing children may begin at birth 
but often starts by 3–9 weeks post-term. Initially, spindles 
appear in the Rolandic regions, are comb-like in mor-
phology, demonstrate prolonged durations up to approxi-
mately 10  s, and often occur asynchronously between 
the hemispheres with relatively low spindle density [72]. 
Spindle length, morphology, synchrony and density fluc-
tuate over the first few years of life, becoming bifronto-
centrally predominant and synchronous by 2 years of age. 
From 3 years through early adolescence, spindle density 
continues to increase [72, 73]. Through these well-estab-
lished changes with age, spindles have been considered 
an index of neural maturation [74]. Spindles guard offline 
information processing by suppressing sensory percep-
tion of external noise and external stimuli during sleep 
[75], with spindle features associated with greater resil-
ience to external perturbation [76] and cognitive abilities 
[77–80]. In neurotypical individuals, spindle density has 
been correlated with the ability to learn a given task [72].

In addition to an overall reduction in sleep spindle 
density in our Dup15q cohort, one 54-month-old child 
notably demonstrated sleep spindles with comb-like 
morphology that occurred both synchronously and asyn-
chronously between the hemispheres—a pattern found in 
typical development during infancy or in developmental 
disorders associated with dysgenesis of the corpus cal-
losum. Brain structural changes have been reported in 
postmortem studies of Dup15q syndrome, including 
abnormal neuronal growth and neuronal migration and 
altered cytoarchitecture [81, 82], which could directly 
disrupt cortical, subcortical and hippocampal network 
connectivity and healthy sleep physiology. A connec-
tivity study on patients with AS demonstrated aberrant 
thalamocortical anisotropy [83], suggesting that there is 
precedent for chromosomal imbalances affecting the 15q 
critical region to alter connectivity of brain structures 
involved in sleep pathways. Future studies that inves-
tigate structural and functional connectivity through 
magnetic resonance neuroimaging (MRI), ideally with 

diffusion tensor imaging (DTI) tractography, may guide 
our understanding of the association between altered 
brain connectivity and abnormal NREM sleep physiology 
in Dup15q syndrome.

SWS is considered to be the most restorative sleep 
stage associated with sleep pressure and sleep qual-
ity [84]. Slow oscillations during NREM sleep critically 
stimulate and synchronize other sleep phenomena. For 
example, physiological ripples ranging from 80 to 100 Hz 
in humans arising within the CA1 pyramidal layer of the 
hippocampus have been shown to coordinate with SWS, 
and they are implicated in the replay of wake-related hip-
pocampal learning activity. Moreover, about 50% of sleep 
spindles are time-locked to specific phases of slow oscil-
lations [28], resulting in a cross-frequency phase-ampli-
tude coupling. While the role of spindle-slow oscillation 
coupling in different sleep stages is still under investi-
gation, it is postulated that the coordinated synchrony 
between thalamocortical spindles, neocortical slow-wave 
oscillations and hippocampal ripples is critical for brain 
communication and plasticity and promotes overall cog-
nitive performance [12, 85].

Converging evidence shows that abnormal spindle 
density and changes in the amount of slow wave activ-
ity during the night are highly associated with cognitive 
impairment [14–16, 26, 72, 86]. In Dup15q syndrome, 
significant reduction in spindles necessary for nesting 
into specific phases of slow oscillations may disrupt the 
temporal coordination between spindles, slow oscil-
lations and hippocampal ripples and, as a result, alter 
overall brain network communication and plasticity. Dis-
ruptions in NREM sleep parameters, therefore, may not 
only index sleep fragmentation, but may also contribute 
to and exacerbate the neurodevelopmental disabilities 
seen in Dup15q syndrome [18–22, 24–28].

Beta oscillations in Dup15q syndrome
In children with Dup15q syndrome, the duplicated 
15q11.2-13.1 gene region includes several genes critical 
for GABAergic neurotransmission, including UBE3A and 
three  GABAAR genes.  GABAAR agonists and modulators 
such as benzodiazepines induce patterns of beta oscil-
lations very similar to what is observed in children with 
Dup15q syndrome [53, 87–91]. Typically, the frequency 
of neural oscillations is determined by time constants on 
postsynaptic receptors, with faster time constants yield-
ing faster oscillatory frequencies [92]. Benzodiazepines 
augment the action of GABA by increasing the frequency 
of  GABAAR channel opening and decreasing the fre-
quency of beta oscillations while still increasing overall 
beta power [93, 94]. While highly speculative, this higher 
amplitude of beta seen in pharmacological  GABAAR 
modulation and in Dup15q syndrome likely reflects 
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shifting of faster oscillations towards the beta frequency 
range [51]. Although beta oscillations are present to vary-
ing degrees in all brain states, persistently elevated beta 
oscillations may inhibit brain state-dependent modula-
tion of neural activity. Interestingly, the converse find-
ing—increased delta power—is seen in individuals with 
AS, likely reflective of the loss-of-function mutations in 
the 15q critical region [95, 96]. In AS,  GABAAR subunit 
genes are often deleted along with the causative UBE3A 
loss-of-function mutations affecting GABAergic neurons 
[97], thus highlighting the complex interplay between 
the 15q critical genes that contribute to the neurophysi-
ologic manifestations seen in the deletion and duplica-
tion syndromes.

Role of GABAergic neurotransmission in sleep physiology
Sleep is a complex and dynamic physiological process 
that is classified into distinct stages defined by neural 
oscillatory patterns that can be identified on EEG (Addi-
tional file  1 and Additional file  2). Brain state-specific 
patterns of neurons and brain state-specific neurotrans-
mitters are either activated or inhibited in order to regu-
late wakefulness and sleep. The basal forebrain (BF), for 
instance, consists of cholinergic neurons that are active 
during wakefulness and REM, as well as a heterogeneous 
group of GABAergic neurons, some of which are active 
during wakefulness and REM, and others which are 
active during NREM sleep only [98]. The latter so-called 
NREM-ON neurons promote sleep through projections 
within the BF as well as through direct projections to the 
cortex [99, 100]. Additionally, levels of cortical GABA in 
the BF neurons are significantly higher during NREM 
sleep [101]. GABAergic neurons in the ventral tegmental 
area regulate GABA neurotransmitter release and inhibit 
wake-promoting orexin/hypocretin neurons, thereby 
promoting NREM sleep [102]. Overall, neural pathways 
engaged in NREM sleep tend to be inhibitory, and there-
fore most sleep-promoting neuronal populations are 
GABAergic [103, 104].

In the lateral hypothalamus (LH), GABAergic neurons 
project to the thalamic reticular nucleus (TRN) where 
they inhibit local TRN GABAergic neurons. Optoge-
netic and lesion studies have shown that while activa-
tion of LH GABAergic neurons induces transitions from 
NREM to wakefulness, inhibition promotes NREM sleep 
and delta oscillations [105, 106]. This TRN-mediated 
inhibitory mechanism is essential in the generation of 
synchronous thalamocortical oscillations, sleep spindles, 
thus giving the TRN its name “sleep spindle pacemaker” 
[28]. GABAergic neurons located within the medulla, 
striatum and the hypothalamus are critical for the induc-
tion of SWS, which is generated within the thalamocor-
tical system and cortically expressed by high amplitude 

oscillations occurring at a frequency of 0.5–2.0 Hz. Dur-
ing SWS, excitatory and inhibitory neurons throughout 
cortical layers engage into periods of depolarized “up” 
states, and hyperpolarized “down” states, the dynamics of 
which are regulated by the activation of  GABABR [107]. 
Some hypnotics such as the benzodiazepines, which 
are ligands of  GABAA receptors, suppress SWS [108], 
while hypnotic  GABAB receptor agonists such as gamma 
hydroxybutyric acid increase SWS and improve sleep 
efficiency [109–111].

Whereas we describe reduced SWS in children with 
Dup15q syndrome, children with AS demonstrate a 
higher percentage of SWS [71], suggesting that chro-
mosomal abnormalities involving the 15q region affect 
the delicate balance of GABAergic neurotransmission 
required for NREM sleep. Reduced spindle density and 
abnormal spindle morphology have also been described 
in children with AS which are thought to be due to aber-
rant thalamocortical connectivity resulting from GABAe-
rgic dysfunction [112]

To our knowledge there are no studies that have 
directly examined structure or function of the afore-
mentioned brain regions in Dup15q syndrome, and 
more detailed functional anatomic investigations remain 
a necessary area of future study. However, the fact that 
GABAergic neurotransmission plays an essential role 
in the initiation, synchronization and maintenance of 
sleep spindles and SWS, and in the regulation of healthy 
NREM sleep, does support a plausible mechanism for the 
altered sleep features quantified in this study.

Clinical implications
As targeted therapeutics emerge in genetically defined 
neurodevelopmental disorders, there arises a rather 
urgent need to identify quantifiable mechanistic elec-
trophysiological biomarkers that can shed light on the 
etiology of cognitive impairment and also serve as a sur-
rogate endpoint in clinical trials. In Dup15q syndrome, 
abnormal sleep physiology, likely attributable to patho-
logical variants of the UBE3A and  GABAAR genes, can 
be quantified as elevated beta oscillations in sleep, com-
bined with changes in spindles and reduced SWS. These 
changes may impair oscillatory synchronization across 
brain regions during NREM sleep and affect overall brain 
network function, and may precede or even exacerbate 
the profound cognitive deficits and behavioral challenges 
commonly diagnosed in these children.

Limitations and future directions
Behavioral sleep measures from parental reporting and 
neuropsychological testing were not available for the 
entirety of this cohort. However, these promising data 
have motivated a larger-scale investigation of sleep EEG 
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and behavioral phenotyping to be able to examine cor-
relations between phenotype and electrophysiology. 
A larger cohort also would allow for the examination 
of the role of epilepsy, including severity of seizures, 
anti-epileptic medications, and developmental age 
that may uniquely impact sleep physiology and con-
tribute to heterogeneity in clinical symptomatology. 
Moreover, because we relied heavily on clinical EEG 
quantification, formal sleep staging as would have been 
performed with PSGs was not possible. However, clini-
cal PSGs are challenging to collect in this population 
and therefore, we may need to rely on routine overnight 
EEG recordings as a proxy for sleep monitoring. In fact, 
the ability to quantify these biomarkers in clinical EEG 
opens the door for larger-scale studies in syndromic 
NDDs, where epilepsy is highly penetrant, as individu-
als with epilepsy undergo routine EEG monitoring on 
a regular basis. Leveraging access to these clinical data 
reduces the cost, time and stress of bringing children to 
research centers for additional data collection.

We speculated in this paper about mechanisms 
underlying these abnormal sleep patterns, but future 
clinical and pre-clinical studies could directly elucidate 
etiology. Clinically, combined MRI and EEG studies 
will allow us to examine brain structural abnormali-
ties that may contribute to altered brain network con-
nectivity. Quantification of sleep electrophysiological 
recordings in pre-clinical models of Dup15q syndrome, 
particularly those with and without the overexpression 
of  GABAAR genes, will directly elucidate the effect of 
putative genes in the 15q region on altered sleep physi-
ology and may also allow for both behavioral and phar-
macological manipulations that could improve sleep 
and learning mechanisms.

Conclusions
While research in EEG biomarkers has traditionally 
focused on oscillatory changes in the EEG during wake-
fulness, our findings suggest that studying sleep physi-
ology in NDDs may be extremely valuable in helping 
identify quantitative biomarkers of sleep, behavior and 
cognitive function. The quantitative methods used in 
this study could be applied to other NDDs. While sleep 
spindles and slow-wave oscillations may be detected by 
qualitative measurements, subtle features may be difficult 
to capture clinically. Quantitative semi-automated meas-
ures can identify differences in sleep physiology and help 
identify biomarkers across syndromic NDDs. Insights 
gained from this study deepen our understanding of the 
pathophysiology in Dup15q syndrome and may lay the 
foundation for studies that investigate the relationship 
between sleep and cognition, with the ultimate goal of 

testing specific therapeutics to alter sleep physiology and 
potentially enhance cognitive development and overall 
clinical outcomes in children with Dup15q syndrome.
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