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Abstract 

Background: According to Bayesian hypotheses, individuals with Autism Spectrum Disorder (ASD) have difficulties 
making accurate predictions about their environment. In particular, the mechanisms by which they assign precision 
to predictions or sensory inputs would be suboptimal in ASD. These mechanisms are thought to be mostly medi‑
ated by glutamate and GABA. Here, we aimed to shed light on prediction learning in ASD and on its neurobiological 
correlates.

Methods: Twenty‑six neurotypical and 26 autistic adults participated in an associative learning task where they had 
to learn a probabilistic association between a tone and the rotation direction of two dots, in a volatile context. They 
also took part in magnetic resonance spectroscopy (MRS) measurements to quantify Glx (glutamate and glutamine), 
GABA + and glutathione in a low‑level perceptual region (occipital cortex) and in a higher‑level region involved in 
prediction learning (inferior frontal gyrus).

Results: Neurotypical and autistic adults had their percepts biased by their expectations, and this bias was smaller for 
individuals with a more atypical sensory sensitivity. Both groups were able to learn the association and to update their 
beliefs after a change in contingency. Interestingly, the percentage of correct predictions was correlated with the Glx/
GABA + ratio in the occipital cortex (positive correlation) and in the right inferior frontal gyrus (negative correlation). In 
this region, MRS results also showed an increased concentration of Glx in the ASD group compared to the neurotypi‑
cal group.

Limitations: We used a quite restrictive approach to select the MR spectra showing a good fit, which led to the 
exclusion of some MRS datasets and therefore to the reduction of the sample size for certain metabolites/regions.

Conclusions: Autistic adults appeared to have intact abilities to make predictions in this task, in contrast with the 
Bayesian hypotheses of ASD. Yet, higher ratios of Glx/GABA + in a frontal region were associated with decreased 
predictive abilities, and ASD individuals tended to have more Glx in this region. This neurobiological difference might 
contribute to suboptimal predictive mechanisms in ASD in certain contexts.
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Background
Humans are sensitive to the contingent relationships 
between cues and outcomes in social or non-social 
contexts, such as the chances of having someone inter-
act with you after making eye contact or seeing rain 
soon after hearing thunder. These associations rely on 
mechanisms of inference [1, 2], whereby the brain tries 
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to predict the most likely outcome by computing prob-
abilities based on past experiences. Cast in the Bayesian 
framework, making optimal inferences requires adjust-
ing our prior knowledge when there is a relevant discrep-
ancy (i.e. prediction error) between our prediction and 
the actual outcome [1]. The weight of prediction errors 
depends on the relative precisions of top-down predic-
tions and bottom-up sensory inputs. The precision of 
prediction errors should be high when mismatches repre-
sent informative changes, but low when signalling noise. 
Minimizing prediction errors, and therefore surprise, can 
be achieved through optimal predictive mechanisms [3] 
that track different forms of uncertainty. Not only does 
the expected uncertainty (e.g. probabilistic cue-outcome 
association) need to be tracked, but also the unexpected 
uncertainty (e.g. unsignalled reversal of the associations) 
[4].

In daily life, dealing with uncertainty can be chal-
lenging, especially for individuals with Autism Spec-
trum Disorders (ASD) who report a high intolerance of 
uncertainty [5–7]. Indeed, in addition to the two core 
symptoms of ASD that are impairments in social com-
munication and interaction, and restricted and repeti-
tive behaviours [8], autistic individuals often report 
difficulties in tolerating unexpected changes. More 
broadly, autistic individuals could perceive the world as 
being more unpredictable than neurotypicals (NT) [9]. 
Accounts of ASD formulated from a Bayesian perspective 
suggest an atypical functioning of the predictive brain in 
ASD [10–15]. Their increased inflexibility or their needs 
for a routine could be a way to restore some predictability 
(i.e. to compensate for feelings of constant unpredictabil-
ity). More precisely, the first Bayesian accounts of ASD 
suggested that perception might not be biased by priors 
so much, either because prior precision is low [10] or 
because sensory precision is high [11]. Another hypothe-
sis suggested a high and inflexible precision of prediction 
errors in ASD (HIPPEA, 12). If prediction errors are not 
flexibly modulated and are always given a high weight in 
ASD, it would lead to suboptimal prior updating and to 
(almost) constant sensations of surprise.

These hypotheses of ASD were elaborated after re-
interpreting the existing literature on learning and per-
ception in ASD within the Bayesian framework, but did 
not come from tasks that were specifically designed to 
test these hypotheses. Since the formulations of these 
hypotheses, several studies attempted to test them more 
directly. A recent systematic review evidenced some dif-
ferences between ASD and NT individuals in predic-
tive learning and predictive responses [16]. They found 
that most of the studies investigating the predictability 
of repeated stimuli showed reduced habitation in ASD 
(e.g. 17, 18). Most studies on structural priors (i.e. priors 

learned over long time scales) reported no differences 
between NT and ASD (e.g. 19, 20), whereas studies on 
contextual priors (i.e. priors learned over shorter time 
scales) gave more heterogeneous results in ASD. For 
instance, low-level perceptual tasks in autistic adults 
showed slower prior learning in ASD [21] or more inflex-
ible priors [22]. Results of associative learning tasks in 
ASD often depend on context. In uncertain contexts, 
the ability to learn and update associations was typical 
in autistic children (colour-reward association task, 23), 
but atypical in autistic adults (tone-visual outcome asso-
ciation, 24). In their study [24], a tone (high or low) was 
probabilistically associated with an outcome (face or a 
house) and participants simply had to report what the 
outcome  was. By modelling the response times (modu-
lated by the expectedness of the outcome), the authors 
showed that autistic adults tended to overestimate the 
volatility of the environment [24]. Yet, a recent study sug-
gested that this might be restricted to subgroups of autis-
tic individuals [25]. In another associative learning study 
where adults had to learn an association between a tone 
and a rotation direction in a very uncertain context, autis-
tic adults managed to learn a prior, but failed to update it 
after an unexpected change in contingency [26]. Another 
study relying on a large cohort of children and adults per-
forming a probabilistic reversal learning task also showed 
poorer performance in ASD and reduced flexible behav-
iours [27]. Finally, another probabilistic reward learning 
task in a volatile environment showed that having more 
autistic traits was associated with worse performance 
[28]. Overall, these behavioural studies tend to indicate 
that priors can be learned in ASD, but maybe with a dif-
ferent dynamic, more inflexibility or with decreased abili-
ties in people with ASD or high autistic traits.

While the investigation of prediction learning in ASD 
has made good progress at the behavioural level (for a 
review: 15), little is known about its underlying neuro-
biological mechanisms in ASD. As mentioned above, 
ASD might be characterized by an atypical precision of 
priors [10], sensory inputs [11] or prediction errors (i.e. 
sensory/prior balance, 12). Precision is thought to be 
encoded by the post-synaptic gain of superficial neurons 
signalling prediction errors [29, 30]. This gain quantifies 
the effect of a presynaptic input on a post-synaptic out-
put, and mostly relies on glutamatergic NMDA receptors 
[29, 30]. According to this framework, an atypical encod-
ing of precision in ASD should be associated with an 
abnormal (glutamatergic) neuromodulation. Top-down 
predictions would be mediated by slow NMDA gluta-
matergic receptors [31], in particular in the prefrontal 
cortex [32]. Bottom-up prediction errors would be medi-
ated by fast AMPA glutamatergic receptors and  GABAA 
receptors [31]. Another hypothesis suggests that rapid 
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glutamatergic and GABAergic neurotransmission would 
represent prediction errors, whereas slower neuromodu-
lators (such as acetylcholine) would encode the preci-
sion of prediction errors [33, 34]. All these hypotheses 
point towards the key role of glutamate (excitatory) and 
GABA (inhibitory) in predictive mechanisms. Abnor-
mal concentrations or signalling of these neurotrans-
mitters would alter the ability to encode the precision 
of predictions or prediction errors, and so, to optimally 
learn predictions. Consistently, computational simula-
tions suggested that an increased glutamate/GABA ratio 
would be consistent with a decreased influence of contex-
tual priors [35]. Given the role of glutamate and GABA 
in predictive mechanisms and the hypotheses of altered 
predictive abilities in ASD, the question arises whether 
abnormal glutamate/GABA signalling could be related to 
the Bayesian accounts of ASD.

Interestingly, abnormalities in the glutamatergic and 
GABAergic neurotransmission were found in ASD, 
including atypical neurotransmitter concentration, 
receptor density or enzyme dysregulation (e.g. [36, 37]). 
On the one hand, some studies support the hyperglu-
tamate theory in ASD and are based on increased glu-
tamate concentrations in the serum and plasma, on the 
upregulation of NMDA receptors in animal models 
induced with valproic acid, or on the behavioural amelio-
rations triggered by antagonists of glutamatergic recep-
tors [38]. On the other hand, some other studies support 
the hypoglutamate theory in ASD and rely on dysfunc-
tion of certain glutamatergic receptors and on beneficial 
effects of glutamatergic agonists in ASD [38]. Studies 
using the in  vivo and non-invasive method of magnetic 
resonance spectroscopy (MRS) in autistic adults showed 
that the level of Glx (glutamate and glutamine) depended 
on the brain region: Glx was either increased (amygdala–
hippocampal complex [39], auditory cortex [40], sensori-
motor cortex [41], anterior cingulate cortex (ACC) [42], 
cerebellum [43]), decreased (ACC [44, 45], central nuclei 
[46, 47]) or not different from NT (frontal regions [46, 
48–51], parietal regions [39, 44, 46], occipital regions [49, 
52], cingulate cortex [50, 53], thalamus [44]). Regarding 
GABA, most of the evidence is in favour of a decreased 
action of GABA in ASD [37, 54]. In autistic adults, MRS 
studies mostly found decreased GABA levels (sensori-
motor cortex [55], supplementary motor area [56], ACC 
[43], cerebellum [43]) or no group differences (frontal 
regions [47, 49, 51, 52, 56, 57], occipital regions [49, 52, 
55, 56], auditory cortex [52, 58], ACC [59], striatum [47]).

It is also important to note that glutamate is converted 
into GABA by the glutamic acid decarboxylase (GAD, 
either the 65 or 67 isoforms), whose concentration was 
found to be reduced in ASD [60]. This would lead to an 
increase in glutamate and decrease in GABA in ASD, 

which is consistent with the results reported above. Con-
sistently, high Glx/GABA ratios measured with MRS 
were associated with more autistic traits (e.g. superior 
temporal cortex [61, 62]). Glutamate is also a precur-
sor of glutathione (GSH), which can be simultaneously 
measured with edited MRS [63]. GSH is a key component 
regulating oxidative stress and several other cellular and 
genetic pathways that contribute to protect cells. GSH 
therefore plays a neuroprotective role in the brain, and 
could, for instance, be released to protect neurons when 
there is an excess of glutamate [64]. An imbalance in the 
GSH redox system could contribute to the neuropathol-
ogy of ASD (e.g. [64]).

To sum up, several findings indicate an imbalance 
in glutamate and/or GABA in autistic adults. As these 
neurotransmitters are hypothesized to play a key role in 
encoding predictions and prediction errors, an alteration 
of the glutamate/GABA signalling could underlie the dif-
ficulties in making predictions, as observed at the behav-
ioural level in ASD. Glutamate is a precursor of GABA 
but also of GSH, a neuroprotective molecule. Although 
there is no specific hypothesis directly relating GSH to 
prediction learning, it contributes to the same meta-
bolic cycle as glutamate and GABA. An imbalance in 
GSH could alter neuronal functions and indicate abnor-
mal Glutamate metabolism. Our exploratory approach 
is therefore to determine the existence of a deficit/excess 
in GSH, which could contribute to shedding light on the 
functioning of brain regions hypothesized to be involved 
in encoding priors.

In order to better understand prediction learning in 
autistic adults and to investigate its neural correlates, 
we conducted a behavioural study combined with MRS 
measurements of Glx, GABA and GSH. NT and autistic 
adults performed an associative learning task where a 
high or low pitch tone was predictive of a clockwise or 
counterclockwise rotation of a pair of dots  (same para-
digm as in [66]). There was some expected uncertainty 
about the cue-outcome association (i.e. 75% of the tri-
als presenting the main association), as well as a part of 
unexpected uncertainty as the association could suddenly 
reverse. Participants had to make explicit predictions 
about the outcome and to report what they perceived. In 
a subset of ambiguous trials, the dots did not rotate, but 
we expected participants to be biased by their predictions 
(i.e. to  report the expected rotation). Therefore, there 
was an explicit measure of prediction learning, as well as 
a measure of prior bias. Participants also filled in ques-
tionnaires assessing their autistic traits or symptoms and 
their intolerance of uncertainty. Finally, Glx, GABA and 
GSH were simultaneously quantified using edited MRS 
in a low-level perceptual region (i.e. the medial occipital 
cortex) and in a higher-level region hypothesized to play 
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a role in learning predictions [67, 68], (i.e. the right infe-
rior frontal gyrus, IFG).

The current study had several objectives. First, we 
aimed at better characterizing prediction learning in 
ASD and relating it to the autistic symptomatology. For 
this purpose, we assessed whether autistic adults man-
aged to learn and update their predictions and whether 
they were biased by their expectations. The Bayesian 
hypotheses suggesting hypo-prior [10] or high sensory 
precision [11] in ASD would predict a decreased prior 
bias and a decreased performance to make predictions. 
However, in light of the recent empirical findings cited 
above, we predicted that autistic individuals would learn 
a prior but may be more inflexible to update it. Within 
the Bayesian literature of ASD, defaults in making accu-
rate predictions are supposed to underlie the autistic 
symptomatology and to account for their higher intol-
erance of uncertainty. Therefore, we predicted that the 
percentage of correct predictions would be negatively 
correlated with the questionnaire scores assessing social 
difficulties, atypical sensory sensitivity and intolerance 
of uncertainty. We also measured whether this predic-
tive ability varied along the autism spectrum using the 
Autism-spectrum Quotient, as autistic traits are con-
tinuously distributed in the population [69] and were 
correlated with performance in a  probabilistic learning 
task [28]. Second, our other main goal was to investigate 
the neuromolecular correlates of prediction learning in 
ASD using MRS. Precisely, we expected the Glx/GABA 
ratio to be correlated with the ability to make predictions 
in lower- and higher-level regions. We were especially 
interested in assessing whether there would be such a 
correlation in the IFG, as it would be involved in encod-
ing predictions and prediction errors [67, 68], and that 
atypicalities were reported in this region in ASD. To bet-
ter characterize the functioning of these two regions in 
ASD, we also compared the concentrations in Glx, GABA 
and GSH between groups. Given the MRS literature, we 
hypothesized that these concentrations would not differ 
in ASD versus NT in the occipital cortex. There are no 
published MRS results in the right IFG in autistic adults; 
yet, given its potential role in making predictions and 
the altered abilities observed in ASD, we hypothesized 
that Glx levels might be increased and/or GABA levels 
decreased, which may be associated with an increase in 
GSH.

Methods
Participants
Participants were 26 neurotypical (NT) adults and 26 
adults with a diagnosis of ASD. The demographic char-
acteristics of the two groups are shown in Table 1. The 
two groups were matched in age, sex ratio, handedness 

ratio and total intellectual quotient. Inclusion crite-
ria were being between 18 and 50 years old, reporting 
normal or corrected-to-normal hearing and vision. 
Exclusion criteria were having contra-indication for 
MRI, having a total intellectual quotient below 70 at 
the Wechsler Adult Intelligence Scale IV (Wechsler, 
2008), or scoring above 32 at the Autism-Spectrum 
Quotient (AQ, Baron-Cohen et  al., 2001) for NT par-
ticipants (to reduce the chances of recruiting someone 
who may have ASD without being diagnosed). Autistic 
participants received their diagnoses from a multidis-
ciplinary Expertise Centre for Autism (University Hos-
pitals of KU Leuven) in a standardized way according 
to the criteria of the Diagnostic and Statistical Manual 
of mental disorders 5 (DSM-5, American Psychiatric 
Association, 2013). Autistic participants were recruited 
via this expertise centre and via the LAuRes (Leu-
ven Autism Research) consortium website if they had 
signed up to be volunteers for upcoming studies. NT 
participants were recruited via the University of Leu-
ven or via acquaintances. None of the NT participants 
reported having a comorbidity or being under medica-
tion. Five autistic participants reported having comor-
bidities (ADHD [4], dyslexia [2], Gilles de la Tourette 
[1]) and eleven reported taking one or several medica-
tion (Abilify (2), Asaflow (1), Bufonix (1), Celecoxib (1), 
Cipralexa (1), Deanxit (1), Depakine (1), Escitalopram 
(1), Fluoxetine (1), Fluoxone (1), Hydrea (1), L-Thyrox-
ine (3), Medikinet (1), Melatonine (1), Montelucast (1), 
Notrilen (1), Redomex (1), Ritalin (1), Trazadone (1), 
Venlafaxine (1), Welbutrin (1)). Note that none of the 

Table 1 Demographic characteristics and questionnaire scores 
of the participants

The table presents the group means (± standard deviations). IQ: Intelligence 
Quotient (Wechsler Adult Intelligence Scale IV); AQ: Autism‑spectrum Quotient; 
SRS: Social Responsiveness; IU: intolerance of uncertainty; GSQ: Glasgow 
Sensory Questionnaire. Note that IQ data from four NT participants are 
missing as they were not native Dutch speakers. Regarding the AQ, all the NT 
participants scored below the 32 cut‑off threshold defined in [66], and below 
the 26 cut‑off threshold suggested in [97] except for one NT participant who had 
an AQ of 29. ns: non‑significant (p > .05), ***p < .001

NT group ASD group p

Number of participants 26 26 –

Male/female number 13/13 13/13 ns

Age (years) 30.9 (± 8.3) 32.2 (± 9.5) ns

Left/right‑handed 2/24 5/21 ns

Total IQ score 113.9 (± 12.3) 112.1 (± 16.5) ns

AQ score 13.0 (± 6.2) 32.1 (± 8.7) ***

SRS score 33.4 (± 13.3) 84.0 (± 24.5) ***

IU score 27.9 (± 8.4) 42.7 (± 6.6) ***

GSQ score 34.5 (± 16.7) 53.3 (± 21.2) ***
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medications directly targeted the GABAergic or gluta-
matergic pathways, except for Depakine.

This study was approved by the medical Research 
Ethical Committee UZ/KU Leuven. Participants pro-
vided written informed consent before the start of the 
experiment.

Overall procedure
Prior to the experiment measuring prediction learning, 
participants filled in online questionnaires: the Autism-
spectrum Quotient (AQ) [71], the Social Respon-
siveness Scale 2nd edition (SRS-2) [72], the Glasgow 
Sensory Questionnaire (GSQ) [73] and a short version 
of the Intolerance of Uncertainty scale (IU) [74] (see 
the scores in Table 1). The goal was to assess if difficul-
ties in making predictions were related to autistic traits 
(AQ), social difficulties (SRS), atypical sensory sensitiv-
ity (GSQ) and intolerance of uncertainty (IU).

Participants performed a short training of the main 
task (7 trials) and then were installed in the MR scan-
ner. A T1-weighted anatomical scan and two MR spec-
troscopy acquisitions were obtained, followed by the 
main task (functional MRI data were acquired as part 
of another study). After leaving the MR scanner, par-
ticipants performed a confidence rating task (48 trials) 
and completed a short debriefing questionnaire (Addi-
tional file 1). MRI and MRS data were acquired on a 32 

head coil 3 T Philips Achieva system at the University 
Hospital of Leuven.

Experimental paradigm
Main task
Trial structure In the associative learning task (Fig. 1a), 
participants first heard a high (576 Hz) or low (352 Hz) 
tone for 500 ms. After a jitter of 100 to 300 ms, they saw 
the prediction response screen for 1000  ms, displaying 
a right and left arrow. Participants were asked to click 
on the right or left button of the MRI response box, if 
they thought that the tone was predictive of a clockwise 
(CW—right) or counterclockwise (CCW—left) dot rota-
tion, respectively. The chosen arrow turned red. Then, two 
dots appeared at their vertical position for 600 ms, made a 
CW or CCW rotation within 33 ms and remained at their 
horizontal position for 600 ms. The perception response 
screen appeared for 1000 ms and displayed a right and left 
double-arrow. Participants had to report whether they 
perceived a CW or CCW rotation using the right or left 
button, respectively, and the chosen double-arrow turned 
red. The inter-trial interval lasted for 1000 to 2000  ms 
(uniform distribution). This paradigm was based on a 
study by Weilnhammer and colleagues [66].

In unambiguous trials, the pair of dots rotated, whereas 
in ambiguous trials the two dots did not rotate but simply 
appeared in their vertical and then horizontal positions.

Participants were given the following instructions: “At 
the beginning of each trial, you will hear a high or a low 

Fig. 1 Experimental paradigm. a Trial structure. After hearing a low or a high pitch tone, participants had to predict the rotation direction of a pair 
of dots, and then to report their percept. The two dots could either rotate in the expected or unexpected direction (unambiguous trials) or simply 
appear in their vertical and then horizontal position without rotating (ambiguous trials). b Example of a block structure. There was a probabilistic 
association between the tone and the rotation direction, which reversed every 16, 24 or 32 trials. For instance, the plot shows the probability of 
having a certain outcome (CCW or CW rotation, or no rotation) given that a high tone that was heard. CW clockwise, CCW  counterclockwise, ITI 
inter‑trial interval
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tone. This tone can predict the direction in which two 
dots will turn (CW or CCW). The association between 
the sound and the rotation direction can change during 
this experiment”.

Block structure Participants completed five blocks of 72 
trials (total of 360 trials). Half of the trials started with a 
high pitch tone and the other half with a low pitch tone. 
Each run consisted of 9 ambiguous trials (12.5% of the tri-
als) and 63 unambiguous trials (87.5% of the trials). There 
were 75% of expected unambiguous trials (i.e. presenting 
the main tone-rotation association) and 12.5% of unex-
pected unambiguous trials (i.e. presenting the least fre-
quent association). Among the unambiguous trials, 50% 
were showing a CW rotation and 50% a CCW rotation. 
The order of the trials was pseudo-randomized so that 
these percentages (75%, 12.5%, 12.5%) remained the same 
across eight successive trials. Each block consisted of a 16 
trial-long, 24 trial-long and 32 trial-long subblock, whose 
order was randomized. The main contingency remained 
the same within a subblock but reversed when changing 
of subblock (i.e. every 16, 24 or 32 trials, see Fig. 1b).

Confidence rating task
As in Weilnhammer et  al. [66], the main task was fol-
lowed by a confidence task to ensure the perceptual qual-
ity of the ambiguous trials (vs. unambiguous trials). The 
structure of this task was the same as the main task, but 
participants also gave a confidence response. The confi-
dence rating screen showing the options “1. Very sure”, 
“2. Quite sure”, “3. Quite unsure”, “4. Very unsure” was 
displayed for 2600  ms after the perception screen. Par-
ticipants used the numbers 1 to 4 on the keyboard to 
report how confident they were about their perception 
response. There were 48 trials, divided into two sub-
blocks of 24 trials, with 50% of ambiguous trials and 50% 
of unambiguous trials.

MRI and MRS acquisitions
Anatomical scan
A high-resolution T1-weighted anatomical scan was 
acquired with a MPRAGE sequence (200 contiguous 
coronal slices, voxel size = 1 × 1 × 1  mm3, TR = 9.7  ms, 
TE = 4.6 ms, field of view = 256 × 240 × 200  mm3, acqui-
sition matrix = 256 × 238, acquisition time = 4 min 35 s). 
This structural image was used to position the MRS 
voxels.

Magnetic resonance spectroscopy
Single voxel MR spectra were acquired from two vol-
umes of interest (VOI): one located in the occipital cor-
tex (OCC) and one located in the right inferior frontal 
gyrus (IFG). The OCC VOI was chosen as a low-level 

perception region (receiving the visual input), while the 
IFG VOI was chosen as a higher-level region, as it may 
play a key role in predictive processes [e.g.  67, 68]. The 
OCC VOI was acquired first and the IFG VOI second. 
The OCC VOI (3 × 3 × 3  cm3) was placed in the medial 
of the coronal slice, dorsal to the cerebellum (Fig. 2a). The 
IFG OCC (4 × 2.5 × 2.5  cm3) was centred on the triangu-
laris part of the right IFG, and the longer dimension of 
the VOI was dorsal to the temporal cortex (Fig. 2b). Note 
that the IFG VOI slightly overlapped with the ventral 
parts of the middle frontal and precentral gyri.

MR spectra were acquired using the Hadamard 
Encoding and Reconstruction of MEGA-Edited Spec-
troscopy (HERMES) sequence [63, 75, 76], allowing 
for simultaneous quantification of GABA + , Glx (glu-
tamine and glutamate) and GSH (glutathione). The 
MRS acquisition parameters were set as follows: 320 
averages, TR = 2000  ms, TE = 80  ms, 2048 data points, 
2000  Hz spectral width, MOIST water suppression, 
90°excitation/180°refocusing pulses, 20 ms editing pulses 
at frequencies of 4.56  ppm for GSH and 1.9  ppm for 
GABA. Interleaved Water Reference correction was used 
to limit the effect of scanner drift [77]. Twenty unsup-
pressed water reference scans (at TE = 80 ms) were also 
acquired. The MRS acquisition lasted for 10 min 56 s per 
VOI. Data were exported as.sdat/.spar.

MRS data analysis
HERMES MRS spectra were analysed using Gannet 
3.1 [78], implemented in MATLAB 2020b. Frequency 
domain spectra were frequency- and phase-corrected 
using spectral registration (specRegHERMES [79]). Pre-
processing of the MRS data also included a 3  Hz line 
broadening filter (exponential apodization function), fast 
Fourier transformation, time averaging, frequency and 
phase corrections based upon fitting of the Choline and 
Creatine signals, and pairwise rejection of data for which 
fitting parameters were greater than three standard devi-
ations from the mean. GABA and Glx were fitted with a 
three Gaussian model using nonlinear least square fit-
ting between 2.79 and 4.10 ppm. The unsuppressed water 
spectrum was modelled between 3.8 and 5.6 ppm using 
a single Gauss-Lorentzian mode with phase and linear 
baseline parameters, also using nonlinear least-squares 
fitting. The GSH spectrum was estimated from 2.25 and 
3.5 ppm using a single Gaussian to model the 2.95 ppm 
GSH signal with four Gaussians to model co-edited 
unwanted signals and a nonlinear baseline.

Upon a careful visual inspection of all the MR spec-
tra, and the criterium that the fit error for Glx and 
GABA + should not exceed 15%, some participants were 
excluded from the analyses (see Table  2). The mean 
fit error, the full-width at half-maximum (FWHM), 
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the water drift and signal-to-noise ratios (SNR) of the 
remaining participants are given in Table  2. None of 
these quality metrics differed between groups except for 
the GABA + concentration in the OCC VOI and the GSH 
concentration in the IFG VOI. The tissue fractions did 
not differ between groups in any VOI (Table 2). Individ-
ual spectra are shown in Fig. 2c–j.

The VOIs were co-registered to the anatomical 
T1-weighted image and segmented in Gannet through 
SPM12 in order to obtain the fractions of grey matter 
(fGM), white matter (fWM) and cerebrospinal fluid (fCSF). 
GABA, Glx and GSH concentrations were quantified rel-
ative to the unsuppressed water signal, and corrected for 
tissue fractions using α correction (e.g. 
 [GABA]αcor = [GABA]

fGM+αfWM
 , with α = 0.5 as per [80] which 

assumes a GM/WM ratio for GABA of 2:1 based on prior 
literature [81]). Additional parameters included an 
assumed visible water concentration of 50,000  mM, an 
editing efficiency of 0.5 and T1- and T2-specific values 

for both GABA and water as described in [80] where T1 
and T2 values were estimated to be different between 
GM and WM. Gannet does not incorporate tissue com-
partment-specific values for GABA as these are currently 
not available, but for water tissue-specific values were 
used for GM, WM, and CSF, with different MR-visible 
concentrations as reported [82]. Note that macromole-
cules at 3 ppm are co-edited with GABA, so GABA levels 
are reported as GABA+ [83] and that an additional MM 
factor of 0.5 was used for the quantification of the esti-
mated concentrations,  as  recommended by [84]. The 
same approach was used for GSH due to lack of pub-
lished information for GSH [85]. Metabolite concentra-
tions are given in institutional units [i.u.]. The tissue 
fractions are reported in Table 2.

Fig. 2 Glx, GABA+ and GSH spectra in the occipital VOI (OCC, left column) and right inferior frontal gyrus (IFG, right column). a, b Examples of MRS 
voxel localization centred over the medial occipital cortex (a) and right IFG (b). c–f Glx and GABA + spectra in the OCC VOI (c NT, e ASD) and IFG 
VOI (d NT, e ASD). g–j GSH spectra in the OCC VOI (g: NT, i: ASD) and IFG VOI (h: NT, j: ASD). Blue: spectra in NT participants. Orange: spectra in ASD 
participants
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Statistical analyses
Note that in the Results section, all results are presented 
as mean (± standard deviation). The threshold for statis-
tical significance was set at p < 0.05. All Student’s t tests 
were two-tailed. Effect sizes are reported as Cohen’s d, 
with the following interpretations regarding effect sizes: 
d = 0.01: very small, d = 0.20: small, d = 0.50: medium, 
d = 0.80: large, d > 1.20: very large [86, 87]. A Pearson’s r 
of 0.10 is considered as a small effect, 0.30 as a medium 
effect and 0.50 as a large effect. When multiple compari-
sons were performed, we also indicated whether the cor-
relations remained significant after False Discovery Rate 
(FDR) correction. Statistical analyses were performed 
using R (version 4.0.3, http:// www.r- proje ct. org/).

Behavioural data
Demographic data were compared between groups using 
Student’s t tests and χ2 tests. Percentages of correct pre-
dictions and of ambiguous trials perceived according 

to the current contingency were compared to chance 
level using one-sample t tests with μ = 0.50. Between-
group comparisons were performed using two-sample t 
tests. Accuracy and response times were analysed using 
repeated-measure ANOVAs, with group as a between-
subject factor (NT vs. ASD) and condition as a within-
subject factor (ambiguous vs. unambiguous trials, or 
expected vs. unexpected trials). In the ANOVAs, the 
independent variables were the groups and the condi-
tions, while the dependent variables were the percentages 
of correct predictions, the percentages of ambiguous tri-
als perceived according to the current contingency, and 
the response times. ANOVAs were performed using the 
function aov (R, http:// www.r- proje ct. org/) which fits an 
analysis of variance model. When significant effects were 
found, paired or two-sample Student’s t tests were used 
as post-hoc tests. Median response times were calculated 
at the individual level, and the mean of these median 
response times across participants is reported. In the 

Table 2 MRS quality metrics, tissue fractions and concentrations

The table presents the group means (± standard deviations). Note that after exclusion of some participants leading to the numbers reported in the table, none of the 
demographic characteristics differed between these NT and ASD subgroups. na: not applicable, ns: not significant (p > .05), *p < .05. p: p values of the Student’s t tests 
comparing the two groups

Occipital VOI (OCC) Inferior frontal gyrus (IFG)

NT ASD p NT ASD p

Number of MRS datasets

GABA+ 24 25 na 22 24 na

Glx 20 22 na 15 16 na

GSH 26 26 na 20 23 na

Fit error (%)

GABA+ 6.4 (± 2.8) 8.2 (± 2.8) * 7.5 (± 2.0) 6.8 (± 1.5) ns

Glx 3.9 (± 0.8) 4.4 (± 1.1) ns 5.3 (± 1.3) 5.0 (± 1.1) ns

GSH 7.3 (± 2.0) 8.3 (± 2.6) ns 14.5 (± 6.3) 10.9 (± 4.2) *

Signal to noise ratio

GABA+ 13.0 (± 3.8) 11.5 (± 3.3) ns 12.9 (± 2.3) 11.9 (± 2.1) ns

Glx 19.9 (± 4.5) 21.2 (± 6.1) ns 17.6 (± 4.7) 16.6 (± 4.0) ns

GSH 10.1 (± 1.9) 9.8 (± 1.8) ns 9.0 (± 1.8) 8.6 (± 1.3) ns

Water drift 0.03 (± 0.01) 0.03 (± 0.01) ns 0.02 (± 0.00) 0.02 (± 0.00) ns

Full-width at half-maximum

GABA+ 21.9 (± 2.7) 22.5 (± 2.5) ns 20.7 (± 2.1) 21.0 (± 2.2) ns

Glx 14.2 (± 2.6) 13.6 (± 2.0) ns 15.8 (± 3.8) 17.2 (± 5.2) ns

GSH 8.7 (± 1.0) 8.9 (± 0.9) ns 10.5 (± 2.7) 11.1 (± 2.5) ns

Tissue fractions

Grey matter 65% (± 4) 66% (± 3) ns 54% (± 5) 54% (± 4) ns

White matter 25% (± 3) 24% (± 3) ns 38% (± 6) 38% (± 5) ns

Cerebrospinal fluid 10% (± 2) 10% (± 3) ns 8% (± 3) 8% (± 3) ns

Concentrations

GABA + (i.u.) 2.94 (± 0.72) 2.75 (± 0.61) ns 2.85 (± 0.53) 2.83 (± 0.61) ns

Glx (i.u.) 9.08 (± 2.90) 9.35 (± 2.60) ns 8.12 (± 1.43) 9.90 (± 3.14) *

GSH (i.u.) 0.93 (± 0.17) 0.92 (± 0.23) ns 1.13 (± 0.40) 1.16 (± 0.36) ns

Glx/GABA + ratio 3.75 (± 2.44) 3.73 (± 1.52) ns 2.91 (± 0.68) 3.59 (± 1.50) ns

http://www.r-project.org/
http://www.r-project.org/
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confidence task, a mean confidence rating was calculated: 
the 1 to 4 scale (Very sure to Very unsure scale) was trans-
formed into a 100% to 0% certainty scale. Correlations 
were assessed using Pearson’s correlation tests.

MRS data
The variables of interest in the MRS analyses were the 
Glx, GABA + and GSH concentrations, as well as the 
Glx/GABA + ratio. In addition, we extracted several 
MRS quality metrics (reported in Table 2) to ensure the 
quality of the data and that they did not differ between 
groups. The Glx, GABA + and GSH concentrations were 
compared between groups using Student’s t tests. The 

Glx/GABA + was correlated with the mean percentage 
of correct predictions using Pearson correlation tests. 
Correlations between metabolite concentrations and 
questionnaire scores were also assessed using Pearson 
correlation tests.

Results
Behavioural results
Prediction response in the main task
Both groups succeeded at predicting the dot pair rota-
tion, as the mean percentage of correct predictions was 
76% (± 9) in the NT group and 73% (± 11) in the ASD 
group (Fig.  3a), and were different from chance level 

Fig. 3 Behavioural results of the main task. a Proportion of correct predictions. The dotted line indicates chance level. b, c Proportion of correct 
predictions at the beginning (first 8 trials) and end (last 8 trials) of a subblock in the NT group (b) and ASD group (c). Grey dotted lines show 
individual responses; thick lines indicate the group mean. d Proportion of ambiguous trials perceived according to the current contingency. The 
dotted line indicates chance level. e Correlation between the proportions of correct predictions and of ambiguous trials perceived according to the 
current contingency in the NT (blue) and ASD (orange) groups. f–h Correlations between the proportion of correct predictions and questionnaire 
scores from the AQ, IU and GSQ. i Correlation between the proportion of ambiguous trials perceived according to the current contingency and the 
GSQ. j Response time (mean at the group level, median at the individual level) to give a perception response for ambiguous (A) and unambiguous 
(U) trials. k Mean certainty rating for ambiguous (A) and unambiguous (U) trials). In all the plots, error bars indicate standard deviations. Blue: NT 
data, Orange: ASD data. Prop.: Proportion. #p = .06, *p < .05, **p < .01, ***p < .001
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(NT: t(25) = 14.6, p < 0.0001, d = 2.86; ASD: t(25) = 10.7, 
p < 0.0001, d = 2.10). There were no group differences in 
accuracy (p = 0.38).

In order to assess whether both groups updated their 
predictions, we conducted a repeated-measure ANOVA 
with the between-subject factor group (NT vs. ASD) 
and the within-subject factor part (beginning of a sub-
block = 8 first trials after a contingency change, vs. end of 
a subblock = 8 last trials of a subblock) on the percentage 
of correct predictions as a dependent variable. There was 
a main effect of part (F(1,50) = 130.4, p < 0.0001), no effect 
of group effect nor interaction effect (p-values > 0.40). 
The percentage of correct predictions increased from 
65% (± 7) to 82% (± 12) in NT (t(25) = 8.8, p < 0.0001, 
d = 1.72, Fig.  3b) and from 64% (± 9) to 79% (± 13) in 
ASD (t(25) = 7.4, p < 0.0001, d = 1.45, Fig. 3c).

Perception response in the main task
Perception response in unambiguous trials Both groups 
got 99% (± 1) of correct responses in unambiguous trials 
(no group difference, p = 0.57). We conducted a repeated-
measure ANOVA on the percentages of correct perception 
responses (dependent variable), with group as a between-
subject factor and expectedness (expected vs. unexpected 
rotation) as a within-subject factor. There was an effect of 
expectedness (F(1,50) = 9.3, p < 0.01), with a slightly higher 
accuracy in expected (99% ± 1) than unexpected (98% ± 3) 
trials (t(51) = 3.1, p < 0.01, d = 0.43). There was no group 
effect nor interaction effect (p-values > 0.80).

Perception response in  ambiguous trials The percent-
ages of ambiguous trials perceived as following the cur-
rent contingency (Fig.  3d) were above chance level in 
NT (72% ± 12, t(25) = 9.7, p < 0.0001, d = 1.90) and ASD 
(66% ± 13, t(25) = 6.6, p < 0.0001, d = 1.29), suggest-
ing that NT and ASD participants were biased by their 
expectations. There was no significant group differ-
ence (t(50) = 1.7, p = 0.095, d = 0.47). The percentages of 
ambiguous trials perceived according to the current con-
tingency and of correct predictions were positively corre-
lated (Fig. 3e) (entire sample: r = 0.62, p < 0.0001).

A repeated-measure ANOVA assessed the effect of 
group as a between-subject factor and part (beginning 
vs. end) as a within-subject factor on the percentage 
of ambiguous trials perceived according to the con-
tingency (dependent variable). There was a part effect 
(F(1,50) = 8.2, p < 0.01), but no group nor interaction 
effects (p-values > 0.20). The percentage of ambiguous 
trials perceived according to the current contingency 
increased from 64% (± 16) to 73% (± 19) (t(51) = 2.9, 
p < 0.01, d = 0.40). Note that within group, this increase 
was significant in NT (from 65% ± 12 to 76% ± 19, 

t(25) = 2.9, p < 0.01, d = 0.58), but not in ASD (from 
62% ± 19 to 70% ± 18, t(25) = 1.4, p = 0.17, d = 0.28).

Unambiguous versus  ambiguous trials Response times 
were longer in ambiguous than unambiguous trials 
(Fig. 3j) in the ASD group (314 ms ± 86 vs. 258 ms ± 70, 
t(25) = 4.8, p < 0.0001, d = 0.93), and did not differ sig-
nificantly in NT (314 ms ± 86 vs. 286 ms ± 84, t(25) = 2.0, 
p = 0.060, d = 0.39).

Correlations between behavioural data and questionnaires
To investigate whether the symptoms of ASD were asso-
ciated with difficulties to make predictions, we inves-
tigated correlations between the percentage of correct 
predictions and autistic traits (AQ), social difficulties 
(SRS), atypical sensory sensitivity (GSQ) and intolerance 
of uncertainty (IU). The percentage of correct predictions 
was not significantly correlated with the AQ (r = − 0.25, 
p = 0.069, Fig.  3f ), SRS (r = − 0.26, p = 0.067) and IU 
(r = − 0.03, p = 0.85, Fig. 3g), and was significantly corre-
lated with the GSQ (r = − 0.33, p = 0.018, Fig. 3h). These 
correlations were performed on the entire sample (across 
both groups).

The percentage of ambiguous trials perceived accord-
ing to the main contingency was significantly corre-
lated with the GSQ (entire sample: r = − 0.42, p = 0.002, 
Fig. 3i), so that individuals with a more atypical sensory 
sensitivity were less biased by their expectations.

After adjusting for multiple comparisons using FDR 
correction, the two correlations with the GSQ remained 
significant.

Confidence rating task
A repeated-measure ANOVA assessing the effects of 
ambiguity (ambiguous vs. unambiguous trials) as a 
within-subject factor and group as a between-subject fac-
tor on certainty ratings revealed an effect of ambiguity 
(F(1,50) = 40.0, p < 0.0001), but no group effect nor inter-
actions (p values > 0.17). Ambiguous trials were rated as 
more uncertain than unambiguous trials (60% ± 30 vs. 
90% ± 14, t(51) = 6.4, p < 0.0001, d = 0.88, Fig. 3k).

Correlations between prediction learning abilities and Glx/
GABA + ratios
As the glutamate/GABA balance is hypothesized to be 
involved in signalling predictions and prediction errors, 
we explored whether the Glx/GABA + ratio was corre-
lated with the ability to learn predictions and whether 
correlations were mostly driven by Glx and/or GABA.

In the OCC VOI, the percentage of correct predictions 
was positively correlated with the Glx/GABA + ratio 
(r = 0.32, p = 0.048, Fig.  4a). Within group, this cor-
relation did not reach the significance level in ASD 
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(r = 0.40, p = 0.070) or NT (r = 0.29, p = 0.25). This cor-
relation appeared to be driven both by Glx (entire sam-
ple: r = 0.30, p = 0.051) and GABA + (entire sample: 
r = − 0.27, p = 0.064).

In the IFG VOI, the percentage of correct predictions 
was negatively correlated with the Glx/GABA + ratio 
(entire sample, r = − 0.46, p = 0.010, Fig.  4b). Within 
group, this correlation was significant in ASD (r = − 0.55, 
p = 0.028), but not in NT (r = 0.04, p = 0.89). This cor-
relation seemed more driven by Glx (entire sample: 
r = − 0.38, p = 0.034) than by GABA + (entire sample: 
r = 0.16, p = 0.29).

These two correlations with the Glx/GABA + ratio 
remained significant after correction for multiple com-
parisons using FDR corrections (adjusted p-values: 
p = 0.048 in OCC, p = 0.020 in IFG).

Note that if the 11 ASD participants taking medica-
tion are removed from the analyses, the correlation coef-
ficients remain close to the ones reported above (OCC 
VOI: r = 0.31, p = 0.088, IFG VOI: r = − 0.40, p = 0.049).

Glx and GABA concentrations
The mean metabolite concentrations are reported in 
Table 2.

In the OCC VOI, the Glx and GABA concentrations 
did not differ between groups (Glx: p = 0.75, Fig.  5b, 
GABA + : p = 0.31, Fig.  5c), and neither did the Glx/
GABA + ratio (p = 0.98).

In the IFG VOI, the Glx concentrations were higher in 
the ASD group than in the NT group (ASD: 9.90 ± 3.14 
i.u. vs. NT: 8.12 ± 1.43 i.u.; t(21) = 2.0, p = 0.05, 
d = 0.72, Fig.  5f ). Note that this result is just at the sig-
nificance level but has a large effect size. In this region, 

GABA + concentrations did not differ between groups 
(p = 0.93, Fig.  5g), nor did the Glx/GABA + ratio 
(p = 0.12).

Finally, the GSH concentrations did not differ between 
groups in the OCC VOI (p = 0.98, Fig. 5d) nor in the IFG 
VOI (p = 0.77, Fig. 5h). As GSH plays a role in homeosta-
sis and that an excess of Glx or a deficit in GABA + can 
lead to excitotoxicity, we assessed whether GSH concen-
trations were correlated with the other metabolite con-
centrations. The concentrations of GSH and GABA + in 
the IFG VOI were negatively correlated (entire sample: 
r = − 0.34, p = 0.031). Within group, this correlation was 
significant in ASD (r = − 0.55, p = 0.007), but not in NT 
(r = − 0.04, p = 0.88). GSH was not correlated with Glx 
nor GABA + in the OCC VOI, nor with Glx in the IFG 
VOI (entire sample: p-values > 0.31). These four cor-
relations (on the entire sample) with GSH are not sig-
nificant when applying FDR corrections for multiple 
comparisons.

Discussion
Using an associative learning task and MRS, we exam-
ined prediction learning and its molecular correlates in 
autistic adults. We found that both NT and ASD partici-
pants were biased by their expectations, as they tended to 
report perceiving a rotation consistent with the current 
contingency in ambiguous trials. Moreover, both groups 
managed to successfully predict the outcome given the 
cue and to update their expectations after a change in 
contingency. This ability to make correct predictions was 
correlated with the Glx/GABA + ratio in the occipital 
cortex (positive correlation) and in the right IFG (nega-
tive correlation). We also found that the concentration 

Fig. 4 Correlations between proportions of correct predictions and Glx/GABA + ratios in the occipital (OCC) (a) and right inferior frontal gyrus (IFG) 
(b) VOIs. Prop.: proportion. *p < .05, **p < .01.
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of Glx in the right IFG was increased in ASD individu-
als compared to NT, whereas the other metabolite con-
centrations did not differ between groups. As higher Glx/
GABA + ratios in the right IFG were associated with 
lower percentages of correct predictions, the increase 
in Glx observed in the ASD group might contribute 
to altered processes of prediction learning in certain 
contexts.

Intact prediction learning in autistic adults
Bayesian hypotheses suggest that autistic individuals 
have difficulties predicting their environment, because 
priors would be uninformative (10) or because predic-
tion errors would be given a high and inflexible weight 
[12]. Yet, we found that both NT and ASD adults man-
aged to learn the cue-outcome association and there-
fore, to deal with some form of expected uncertainty. 
ASD is also thought to be associated with impairments 
in context-sensitive adjustments of sensory precision, 
leading to atypical representations of the environmental 
volatility [15]. However, in the current experiment, both 
groups were able to update their beliefs when the asso-
ciation suddenly reversed, suggesting a capacity to deal, 
to a certain extent, with unexpected uncertainty. Yet, it 
should be highlighted that participants were explicitly 
told that the association could change, which therefore 
reduced the degree of unexpected uncertainty. Given 

the design of the task (i.e. associations reversing every 16 
to 32 trials), participants may have captured the overall 
underlying structure of the tone-rotation association. In 
contrast, using the same paradigm [26] but with a lower 
probabilistic association (62.5% instead of 75%), we had 
found that autistic adults could learn predictions but did 
not update their priors after a change in contingency. 
This difference in results suggests that autistic individuals 
are able to make predictions in a volatile and uncertain 
context, but that the amount of uncertainty that can be 
tolerated to ensure optimal predictive processes is lower 
in ASD than NT. Notably, a probabilistic reinforcement 
learning task also indicated an impairment of the ASD 
group when the probability was set at 70%, but no differ-
ence with NT when it was set at 80% [88]. In line with 
our results, autistic children could update their predic-
tions in a decision-making task in a volatile context [23]. 
Nonetheless, another associative learning task showed 
that autistic adults had more difficulties tracking the vol-
atility (which was overestimated), leading to a decreased 
distinction between expected and unexpected outcomes 
[24]. In their study, it should be noted that prediction 
learning was only assessed implicitly, as they did not ask 
for any prediction response but observed how response 
times and error rates were modulated by the expected-
ness of the outcome [24]. Bayesian hypotheses of ASD 
suggest that the atypical predictive abilities observed 

Fig. 5 Estimated metabolite concentrations in the occipital VOI (first raw) and right inferior frontal gyrus (IFG, second raw). Metabolite 
concentrations are given in institutional units (i.u.) and were corrected for tissue fractions. Error bars indicate standard deviations. *p = .05
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in perceptual tasks could be extrapolated to the social 
domain, which is inherently dynamic and complex. Yet, 
we did not find significant correlations between predic-
tive abilities and social difficulties in the present study.

In another learning task in a volatile environment, 
worse performance was associated with more autistic 
traits in NT [28]. In the present study, the correlation 
between accuracy levels and autistic traits was non-sig-
nificant but also negative (small to medium effect size). 
Yet, contrary to our expectations, individuals with a high 
intolerance of uncertainty in their daily lives did not have 
more difficulties to make predictions. It suggests that 
knowing what to expect is not sufficient to better cope 
with uncertainty in ASD. Nonetheless, measurements of 
predictive abilities performed in laboratory conditions 
are obviously different from real-life situations that are 
much more complex, noisy and uncertain.

In addition to the explicit prediction response directly 
assessing whether participants had learned the associa-
tion, there was an implicit perception response in ambig-
uous trials that assessed the perceptual bias induced by 
this expectation. Both NT and ASD individuals were 
biased by their expectations, as they reported perceiving 
the rotation that they expected to see, even though there 
was no rotation. This result does not support the hypo-
prior hypothesis stating that priors do not influence per-
ception in ASD [10]. Yet, it should be noted that there 
was a non-significant trend towards a decreased prior 
bias in ASD (d = 0.47, medium effect), in line with the 
results of our previous associative learning task in a more 
uncertain context [26]. We also found that the extent of 
this prior bias was negatively correlated with the GSQ 
scores, so that individuals with a more atypical sensory 
sensitivity (as encountered in ASD) had their percepts 
less influenced by expectations.

Altogether, these results seem to indicate that the 
Bayesian hypotheses of ASD need to be refined as autistic 
adults are able to learn and update their priors in some 
specific experimental contexts.

Prediction accuracy is associated with the Glx/
GABA + ratios
Based on the predictive coding literature, we had hypoth-
esized that the ability to make correct predictions might 
be related to the glutamate/GABA balance. The percent-
ages of correct predictions were indeed correlated with 
the Glx/GABA + ratios in our low-level and higher-level 
regions of interest: positively correlated in the occipital 
cortex (medium effect size) and negatively correlated in 
the right IFG (close to a large effect size).

In other words, individuals who were good at predict-
ing the outcome had high Glx/GABA + ratio in the occip-
ital cortex. This correlation was supported both by an 

increase in Glx and a decrease in GABA + leading to bet-
ter performance, and was relatively similar in each group. 
It suggests that enough excitatory signalling combined 
with a relatively low inhibition level in the visual cortex 
ensures typical predictive processing in both groups.

In the right IFG, hypothesized to play a key role 
in attributing prior and sensory precisions, the Glx/
GABA + ratio was higher in individuals who had more 
difficulties to make correct predictions. This correlation 
had a large effect size in the ASD group, but a very small 
effect size in the NT group, and was mostly due to higher 
Glx concentrations being associated with lower perfor-
mance. Interestingly, we also found increased Glx levels 
in this region in ASD, which might imply that an excess 
of Glx could have prevented from making accurate pre-
dictions. As described above, even though the ASD group 
performed as accurately as the NT group, another exper-
iment with a more uncertain context revealed increased 
difficulties for ASD adults to update their predictions 
[24]. We can hypothesize that hyperglutamatergia in the 
right IFG disturbs the typical predictive mechanisms, by 
attributing a suboptimal precision, and might contribute 
to difficulties to flexibly update priors. In line with the 
hypotheses cited above, it might be interpreted as a dis-
turbed functioning of the predictive brain for high-level 
aspects (i.e. update of priors across time) in this higher-
level region.

Increased Glx in the right IFG in autistic adults
In the right IFG, Glx levels were higher in ASD than NT, 
while GABA + concentrations did not differ between 
groups. To the best of our knowledge, this study is the 
first one to quantify these metabolite concentrations in 
the right IFG of autistic adults. A few studies measured 
them in other frontal regions in the left hemisphere in 
autistic adults, and showed no difference in GABA + (left 
ventral premotor cortex, [56]) nor Glx (left dorsolateral 
prefrontal cortex, [46, 50]). In autistic children, glutamate 
was found to be increased in a frontal region (unspeci-
fied MRS voxel localization) and this measurement was 
strongly positively correlated with blood glutamate lev-
els [89]. In line with this result, our findings indicate a 
tendency towards hyperglutamatergia in the right IFG 
of autistic adults. An excess in glutamate might lead to 
excitotoxicity and could contribute to imbalanced excita-
tory transmission in ASD. Following the predictive cod-
ing hypotheses, it would alter the encoding of prediction 
errors and therefore the update of priors. Even though 
Glx measurements performed with MRS are noisy and 
composite (glutamate and glutamine), an increase in 
Glx might also lead to an increased excitatory/inhibi-
tory balance. This balance is crucial for optimal neural 
signal formation and transmission, and several theories 
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suggest that an increased in this balance might under-
lie the abnormalities encountered in ASD [90–92]. In 
the occipital cortex, the absence of group difference in 
GABA + or Glx concentrations is in line with the litera-
ture (GABA + : [49, 52, 55, 56]; Glx: [49, 52]).

In addition to this potentially disturbed excitatory/
inhibitory balance, an imbalance between oxidative stress 
and antioxidant systems can destabilize neural networks. 
GSH is the main free radical scavenger in the brain 
and therefore protects neurons. Using the HERMES 
sequence, GSH was simultaneously edited with Glx and 
GABA + . GSH concentrations did not differ between 
groups in the occipital cortex or in the IFG, suggesting 
typical antioxidant functions in ASD. In the right IFG 
only, high GSH concentrations were associated with low 
GABA + concentrations in autistic adults. This correla-
tion might underlie the fact that both GABA and GSH 
have glutamate as precursor, and that if glutamate is 
mostly transformed into GSH, then it will be associated 
with less GABA synthesis. It might also suggest that in 
the right IFG of autistic adults, synthesizing glutathione 
to protect neurons may be done at the expense of GABA 
inhibition.

As higher glutamate/GABA ratios in the IFG were 
associated with worse predictive abilities and that autis-
tic individuals had more glutamate in this region, we 
can hypothesize the encoding of priors and prediction 
errors might be altered in the IFG in ASD. It might, in 
turn, lead to difficulties to learn certain statistical regu-
larities of the environment (such as, its volatility) in ASD 
when the uncertainty is high (e.g. [26]) but not when it is 
less uncertain (current study). Yet, we highlight that this 
interpretation is currently only a hypothesis, that other 
neurotransmitters [4, 13, 34, 93] might come at play in 
encoding predictions and that we only measured con-
centrations but did not assess any other aspects of the 
glutamatergic or GABAergic pathways. Furthermore, the 
hypotheses regarding the role of glutamatergic/GABAe-
rgic balance in predictive coding are specific to different 
layers of the cortex, while MRS only allowed measure-
ments in a large brain region (obviously including all cor-
tical layers).

Limitations
Limitations of these MRS measurements include that 
GABA might be co-edited with macromolecules [94], 
that glutamate is co-edited with glutamine, and that to 
ensure a good fit quality, we had to reduce our sample 
size for certain measurements. Furthermore, our exami-
nation of GSH was exploratory, since HERMES allows 
for simultaneous measurement of GABA, Glx, and GSH, 
which contribute to the same metabolic pathway. In addi-
tion, there is some evidence of altered GSH metabolism 

in ASD (e.g. [64]). However, there is limited consensus 
regarding fitting and quantification of GSH. While peak-
based fitting approaches for the GABA difference spec-
trum are widely used, given the complexity of the GSH 
difference spectrum, peak-based fitting approaches are 
perhaps less optimal (see also: [85]). Similarly, while for 
quantification of GABA, there is substantial evidence for 
tissue-specific relaxation and concentration differences, 
this is less obvious for GSH. In Gannet 3.1 the approach 
for GSH is identical to that of GABA. In the future, bet-
ter fitting approaches and quantification approaches 
for GSH are required, for example, linear combination 
model fitting [95]. Furthermore, in the future, we will 
acquire both short TE and metabolite-TE water unsup-
pressed data for both quantification and eddy current 
correction as is now recommended [84, 96]. In order to 
minimize the scanning time, we focused on two regions 
only, but measurements in other regions such as the left 
orbitofrontal cortex, the anterior cingulate cortex or the 
cerebellum could have been informative given their role 
in signalling predictions or prediction errors. Moreover, 
eleven participants with ASD were taking one or sev-
eral medications, which might have affected some of the 
results reported in this manuscript. Future studies should 
replicate these findings using larger samples to assess 
whether the absence of significant differences is due or 
not to the small sample size.

Conclusions
Neurotypical and autistic adults successfully learned 
and updated predictions, suggesting no particu-
lar impairment of the predictive brain in ASD in this 
context. The Bayesian hypotheses of ASD should be 
refined, as uniformly weak priors do not seem to accu-
rately describe their behaviour. MRS results indicated 
that an excess in glutamate in the right IFG in autistic 
adults could be associated with suboptimal predictive 
mechanisms. In order to directly assess the role of glu-
tamatergic/GABAergic neurotransmission in learning 
priors, future studies could use glutamatergic antago-
nists or transient disruption of GABAergic signalling to 
evaluate their effect on prediction learning in ASD.
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