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LETTER TO THE EDITOR

A proof-of-concept study of growth 
hormone in children with Phelan–McDermid 
syndrome
S. Sethuram1 , T. Levy2,3 , J. Foss‑Feig2,3,4 , D. Halpern2,3 , S. Sandin2,3,5 , P. M. Siper2,3,4 , H. Walker2,3, 
J. D. Buxbaum2,3,4,6,7 , R. Rapaport8  and A. Kolevzon2,3,8*  

Abstract 

Background: Phelan–McDermid syndrome (PMS) is caused by 22q13 deletions including SHANK3 or pathogenic 
sequence variants in SHANK3 and is among the more common rare genetic findings in autism spectrum disorder 
(ASD). SHANK3 is critical for synaptic function, and preclinical and clinical studies suggest that insulin‑like growth 
factor‑1 (IGF‑1) can reverse a range of deficits in PMS. IGF‑1 release is stimulated by growth hormone secretion from 
the anterior pituitary gland, and this study sought to assess the feasibility of increasing IGF‑1 levels through recombi‑
nant human growth hormone (rhGH) treatment, in addition to establishing safety and exploring efficacy of rhGH in 
children with PMS.

Methods: rhGH was administered once daily for 12 weeks to six children with PMS using an open‑label design. IGF‑1 
levels, safety, and efficacy assessments were measured every 4 weeks throughout the study.

Results: rhGH administration increased levels of IGF‑1 by at least 2 standard deviations and was well tolerated 
without serious adverse events. rhGH treatment was also associated with clinical improvement in social withdrawal, 
hyperactivity, and sensory symptoms.

Limitations: Results should be interpreted with caution given the small sample size and lack of a placebo control.

Conclusions: Overall, findings are promising and indicate the need for larger studies with rhGH in PMS.

Trial registration NCT04003207. Registered July 1, 2019, https:// clini caltr ials. gov/ ct2/ show/ NCT04 003207.
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Introduction
Phelan–McDermid syndrome (PMS) is caused by dele-
tions in the long arm of chromosome 22 which include 
the SHANK3 gene (MIM: 606230), or by pathogenic 
sequence variants in SHANK3 [1–4]. PMS is associated 

with developmental delays, intellectual disability, and 
autism spectrum disorder (ASD), in addition to renal, 
cardiac, and gastrointestinal abnormalities, hypotonia, 
and dysmorphic features [5]. SHANK3 has been estab-
lished as the critical gene in PMS [1–4, 6] and appears 
to account for ~ 0.5% of ASD [7]. SHANK3 encodes for 
a master scaffolding protein in the post-synaptic density 
of excitatory synapses and is responsible for the forma-
tion and maintenance of synapses [8]. As such, SHANK3 
and associated pathways represent important targets for 
intervention.
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Evidence from both preclinical and clinical studies 
suggests that insulin-like growth factor-1 (IGF-1) can 
reverse deficits in synaptic plasticity and motor learn-
ing in mouse and human neuronal models of PMS [9, 
10]. A clinical trial with IGF-1 in children with PMS also 
showed improvement in social withdrawal and restricted 
behaviors, both core features of ASD [11]. Additional evi-
dence of the utility of IGF-1 comes from animal, human, 
and human neuronal studies of Rett syndrome, another 
rare genetic disorder associated with ASD, where IGF-1 
was effective in reversing phenotypic features [12–16].

IGF-1 is released mainly by the liver upon growth 
hormone stimulation and enters the brain from the cir-
culation to promote brain vessel growth [17], neurogen-
esis, and synaptogenesis [18]. Once IGF-1 binds to the 
IGF-1 receptor, activation of the PI3K/mTOR/AKT1 and 
MAPK/ERK pathways induces its downstream effects 
[19]. Treatment with IGF-1 is generally administered 
twice daily via subcutaneous injection and requires care-
ful monitoring due to numerous risks, including hypo-
glycemia. Further, IGF-1 is challenging to manufacture 
and while commercially approved for short stature due 
to primary IGF-1 deficiency, it is costly and not readily 
available. However, IGF-1 levels can be increased intrin-
sically by growth hormone [20] without the risk of hypo-
glycemia. Recombinant human growth hormone (rhGH) 
has an excellent safety profile and approved indications in 
pediatric and adult populations. One recent case report 
also supports the use of rhGH in PMS [21]. For these 
reasons, rhGH was chosen for this trial with the primary 
aims of demonstrating the feasibility of increasing IGF-1 
levels in the blood and establishing safety in PMS. Fur-
thermore, we sought to explore signals of efficacy using 
a battery of clinical outcome assessments, including the 
Aberrant Behavior Checklist—Social Withdrawal sub-
scale (ABC-SW) [22] as the primary clinical outcome. 
The ABC-SW subscale was chosen based on results from 
the previous clinical trial with IGF-1 in PMS [11].

Methods
This study was approved by the Program for the Protec-
tion of Human Subjects at the Icahn School of Medi-
cine at Mount Sinai, and all caregivers provided written 
informed consent.

Inclusion/exclusion criteria
Participants were required to have a confirmed genetic 
diagnosis of PMS and be between 2 and 12 years of age. 
Participants were excluded if they had closed epiphyses, 
active or suspected neoplasia, intracranial hypertension, 
hepatic insufficiency, renal insufficiency, cardiomegaly/
valvulopathy, or allergy to growth hormone or any com-
ponent of the formulation.

Drug administration
rhGH was administered in its commercially avail-
able form as somatropin (Zomacton). Caregivers were 
trained by a pediatric endocrinologist (Sethuram, S) to 
administer rhGH subcutaneously, through demonstra-
tion and written material. rhGH was given once daily 
for 12  weeks using an open-label design. Doses were 
based on standard clinical practice for children who 
are not growth hormone deficient with a target dose of 
0.3 mg/kg/week. All participants were initiated on half 
the target dose (0.14–0.16 mg/kg/week) for two weeks 
as a safety precaution and then increased to a full dose 
for the remaining 10  weeks. IGF-1 levels were meas-
ured every 4 weeks, and IGF-1 Z scores were used to 
guide titration of rhGH dose using two standard devia-
tions (SD) above the population mean as the target.

Safety measures and laboratories
Medical and psychiatric history was collected prior 
to the onset of the trial. Safety laboratories, physi-
cal examinations, and IGF-1 values were collected at 
the baseline visit and at each follow-up visit: weeks 4, 
8, and 12. Adverse events were collected at every visit 
using the Systematic Longitudinal Adverse Events Scale 
(SLAES).

Clinical measures
The primary clinical outcome was the ABC-SW sub-
scale (ABC-SW) [22]. Additional clinical outcome 
assessments were used to capture a range of ASD-
related symptoms, including the Repetitive Behavior 

Table 2 Adverse events

Adverse event Number of 
participants

Increase in appetite 3

Gastroenteritis 3

Polyuria/nocturia 3

Crying spells 3

Runny nose/cough/sneezing 3

Decrease in appetite 1

Fever 3

Worsening repetitive behavior 2

Eye/ear infection 2

Diarrhea 1

Worsening hyperactivity 2

Sleep disturbance 1

Disruptive behavior 1

Bruising at injection site 1

Sweating of hands/feet 1

Limping/gait changes 1
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Scales—Revised (RBS-R) [23], the Sensory Profile (SP) 
[24], other ABC subscales (Table  2), and the Clinical 
Global Impression—Improvement scale (CGI-I) [25].

Statistical analyses
Nonparametric Wilcoxon signed-rank tests were used 
to evaluate differences in clinical outcomes between 
baseline and week 12. All tests of statistical hypotheses 
were done on the two-sided 5% level of significance. We 

Table 1 rhGH dose in mg/kg/week and IGF‑1 Z scores

a Dose reduced due to high IGF-1 levels
b Dose reduced due to crying spells

Participant Baseline Week 2 Week 4 Week 8 Week 12

1 IGF‑1 Z score 0.8 – 2.6 4.8 2.2

rhGH dose 0.15 0.3 0.28 0.24a –

2 IGF‑1 Z score 1.0 – 6.0 5.0 3.9

rhGH dose 0.15 0.28 0.24a 0.16a –

3 IGF‑1 Z score 1.1 – 2.8 4.7 1.7

rhGH dose 0.14 0.3 0.29 0.24a –

4 IGF‑1 Z score 0.9 – 4.5 1.8 2.9

rhGH dose 0.16 0.29 0.21a 0.19b –

5 IGF‑1 Z score 2.3 – 4.9 4.2 1.3

rhGH dose 0.14 0.27 0.22a 0.13a –

6 IGF‑1 Z score − 1.2 – 1.1 1.3 0.9

rhGH dose 0.15 0.31 0.33 0.32 –
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Fig. 1 Domains of clinical improvement. Lower ABC scores indicate improved behavior, and higher SSP scores indicate improved behavior
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selected a single primary efficacy variable (ABC-SW) a 
priori and did not adjust for multiplicity of statistical 
tests. All raw p values are presented to allow an adjust-
ment post hoc (Table 3). In the case of missing data, we 
used the last observation carried forward. The sample 
size was not based on statistical criteria and was deter-
mined by  feasiblity for this pilot study.

Results
Participants
This trial was conducted from September 2019 to June 
2020 and terminated early due to COVID-19; the origi-
nal recruitment target was 10 participants. Six partici-
pants were screened, and all met inclusion criteria and 
were enrolled. Participants (2 males; 4 females) were 
between 3.2 and 11.4  years of age (7.5 ± 3.2). All par-
ticipants except one female were pre-pubertal. The one 
child who was pubertal on physical and biochemical 
evaluation did not reach menarche. At baseline, all chil-
dren were of average weight (− 0.85 ± 1.15 SD), height 
(− 1.38 ± 0.75 SD), and body mass index (-0.82 ± 1.27). 
All bone ages were within the normal range. Baseline 
IGF-1 Z scores varied between − 1.2 and 2.3 (Table 1).

Safety
Recombinant human growth hormone was generally 
well tolerated, and there were no serious adverse events 
(Table 2). On average, participants experienced approxi-
mately five treatment emergent adverse events. One 
participant experienced gait changes, and rhGH was 
terminated early at week 11 out of an abundance of cau-
tion due to the risk of slipped capital femoral epiphysis. 
The participant was evaluated by their pediatrician, and 
no additional workup was deemed necessary; gait nor-
malized within 2 days after stopping rhGH and with-
out further sequelae. Another participant required dose 
reduction due to crying spells. Crying spells in all three 
participants were attributed to increased emotional labil-
ity. There were no clinically significant abnormalities on 
laboratory blood work.

Efficacy
There was an improvement in our primary clinical out-
come, the ABC-SW subscale, between baseline and week 
12 (p = 0.028) (Fig.  1). There was also an improvement 
in hyperactivity using the ABC hyperactivity subscale 
(p = 0.027), and in overall sensory symptoms as meas-
ured by the short  sensory profile total score (p = 0.042). 

Table 3 Summary statistics for clinical outcomes

ABC Aberrant Behavior Checklist, CGI Clinical Global Impressions scale, RBS-R Repetitive Behavior Scales—Revised, SSP Short Sensory Profile
a For the ABC and RBS-R, lower scores indicate better performance; for the SSP and CGI-Improvement scale, higher scores indicate better performance

Measurea Variable Baseline
Mean (SD)

Week 12
Mean (SD)

p value Wilcoxon 
r effect

ABC Irritability 10.31 (7.6) 4.6 (2.3) 0.225 0.50

Social withdrawal 14.8 (7.4) 6.2 (3.4) 0.028 0.90

Stereotypy 8.8 (6.9) 5.1 (1.8) 0.249 0.47

Hyperactivity 33.3 (6.2) 16.5 (7.7) 0.027 0.90

Inappropriate speech 3.3 (4.3) 2.3 (3.8) 0.285 0.44

RBS‑R Stereotyped behavior 4.3 (1.7) 4.0 (2.4) 0.577 0.23

Self‑injurious behavior 0.7 (0.8) 1.3 (1.8) 0.157 0.58

Compulsive behavior 2.8 (3.2) 1.3 (1.6) 0.083 0.71

Ritualistic behavior 1.2 (1.2) 0.8 (1.2) 0.414 0.33

Sameness behavior 2.3 (2.4) 2.0 (1.7) 0.680 0.17

Restricted behavior 2.0 (2.2) 1.2 (1.5) 0.129 0.62

Total 13.3 (6.1) 10.7 (3.1) 0.248 0.47

SSP Tactile 31.5 (2.1) 31.7 (2.0) 1.00 0.00

Taste/smell 18.2 (3.6) 19.4 (1.3) 0.317 0.41

Movement 13.3 (1.6) 13.7 (1.8) 0.157 0.58

Sensation 17.5 (4.8) 20.0 (2.4) 0.416 0.33

Auditory 20.0 (1.9) 22.0 (2.4) 0.144 0.60

Low energy/weak 16.5 (6.9) 20.5 (5.2) 0.141 0.60

Visual/auditory 22.3 (2.3) 22.7 (1.5) 0.414 0.33

Total 139.3 148.8 0.042 0.83

CGI Improvement score – 1.7 (0.5) 0.023 0.93
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Overall, there was global improvement as measured by 
the CGI-I (p = 0.023). There were no significant changes 
in other clinical domains (Table 3).

Discussion
The results of this pilot open-label clinical trial dem-
onstrate that standard clinical doses of rhGH increased 
levels of IGF-1 in children with PMS by at least 2SD 
from baseline for all participants; final levels of greater 
than or equal to 2SD were reached in all except one 
participant. Further, we show that rhGH was well toler-
ated without serious adverse events. As rhGH is already 
FDA-approved and established as safe in children with 
growth-related problems and in adults with growth 
hormone deficiency, these results provide preliminary 
evidence of safety in a new patient population without 
specific growth issues. rhGH treatment was also associ-
ated with clinical improvement that parallels the effects 
of IGF-1 on social withdrawal in this population. In 
addition, rhGH was associated with benefits in hyper-
activity and sensory symptoms, all leading to global 
improvement based on the CGI-I. Studies of rhGH in 
PMS are ongoing using a randomized, placebo-con-
trolled, crossover design. In addition, it will be critical 
to discover biomarkers to predict treatment response 
to rhGH in PMS, and potentially, within subgroups of 
ASD more broadly.

Limitations
Results should be interpreted with caution given the 
small sample size and open-label design of the study.

Conclusions
Taken together, these findings support the development 
of rhGH as treatment for children with PMS. Future 
studies of the effects of rhGH in PMS using an adequately 
powered placebo-controlled design are warranted.
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