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Abstract 

Background: Repetitive action, resistance to environmental change and fine motor disruptions are hallmarks of 
autism spectrum disorder (ASD) and other neurodevelopmental disorders, and vary considerably from individual to 
individual. In animal models, conventional behavioral phenotyping captures such fine‑scale variations incompletely. 
Here we observed male and female C57BL/6J mice to methodically catalog adaptive movement over multiple days 
and examined two rodent models of developmental disorders against this dynamic baseline. We then investigated 
the behavioral consequences of a cerebellum‑specific deletion in Tsc1 protein and a whole‑brain knockout in Cnt‑
nap2 protein in mice. Both of these mutations are found in clinical conditions and have been associated with ASD.

Methods: We used advances in computer vision and deep learning, namely a generalized form of high‑dimensional 
statistical analysis, to develop a framework for characterizing mouse movement on multiple timescales using a single 
popular behavioral assay, the open‑field test. The pipeline takes virtual markers from pose estimation to find behavior 
clusters and generate wavelet signatures of behavior classes. We measured spatial and temporal habituation to a new 
environment across minutes and days, different types of self‑grooming, locomotion and gait.

Results: Both Cntnap2 knockouts and L7‑Tsc1 mutants showed forelimb lag during gait. L7‑Tsc1 mutants and Cnt‑
nap2 knockouts showed complex defects in multi‑day adaptation, lacking the tendency of wild‑type mice to spend 
progressively more time in corners of the arena. In L7‑Tsc1 mutant mice, failure to adapt took the form of maintained 
ambling, turning and locomotion, and an overall decrease in grooming. However, adaptation in these traits was simi‑
lar between wild‑type mice and Cntnap2 knockouts. L7‑Tsc1 mutant and Cntnap2 knockout mouse models showed 
different patterns of behavioral state occupancy.

Limitations: Genetic risk factors for autism are numerous, and we tested only two. Our pipeline was only done under 
conditions of free behavior. Testing under task or social conditions would reveal more information about behavioral 
dynamics and variability.
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Background
The highly variable phenotypes associated with neurode-
velopmental disorders such as autism spectrum disorder 
(ASD) present a challenge to classification. Diagnosis of 
ASD draws heavily on the identification of distinctive 
actions. Arising in early life, this disorder is defined by 
abnormal social interactions and communication, stereo-
typed repetitive behaviors and restricted interests [1, 2]. 
The intensity and manifestation of these traits can vary 
greatly between individuals. In addition to cognitive and 
social variation, persons on the autism spectrum also 
express variable degrees of deficit in movement and sen-
sory response [3–5]. The entire range of variation is cur-
rently classified for treatment purposes as a single broad 
entity, ASD [6, 7].

For a highly heritable disorder such as autism, mice 
provide an attractive model because they open the pos-
sibility of studying the consequences of a particular 
genetic or environmental factor repeatedly among many 
individuals. Mouse models of autism and other disor-
ders have been designed to reflect known risk factors 
and causes in humans (construct validity) [8, 9]. Models 
are often selected for investigation based on their puta-
tive behavioral similarities to the human disorder (face 
validity) and have traits that include perseveration, dis-
rupted social preference and deficits in flexible learning. 
Face-valid traits can be observed in conjunction with 
other traits that are usually considered to be of second-
ary interest, such as sensory and motor deficits. Those 
phenotypes originate from the same genetic perturbation 
that produced the primary traits of interest, making them 
potentially useful for linking symptoms to underlying 
mechanisms.

Traditionally, mouse behavioral testing consists of 
discrete measurements such as location in a multi-arm 
maze or a three-chamber test apparatus [10, 11]. Such 
characterization omits both finer details of movement 
and higher-order complex behavioral motifs [12]. These 
details can now be extracted efficiently using mod-
ern computational methods in machine vision. Recent 
advances in automated tracking allow  deep phenotyp-
ing of movement consisting of simultaneous tracking 
of body-centric joint and body part positions, x − y 

position in an arena and task performance, thereby 
providing a multi-level view of behavior [13–16]. This 
allows the measurement of movement and cognitive/
social features from a single dataset [17, 18]. We devel-
oped a method using such a system for semi-supervised 
behavioral classification in individual mice during 
spontaneous activity. Our method describes long-term 
structure and fine-scale kinematic details in repeated 
recordings. Body part identification is consistent within 
individual mice over multiple sessions in the open-field 
arena. From these detailed features, we used posture 
dynamical clustering [19–22] to quantify the entire 
repertoire of movement.

We established a description of a commonly used 
inbred strain of mice, C57BL/6J (‘Black6’), to char-
acterize baseline behavior and to identify sex differ-
ences. Sex-dependent differences in gene regulation 
have been suggested to underlie the higher incidence 
of autism in males [23]. We then identified features 
of movement that were correlated with genetic back-
ground and specific genetic manipulations [10, 24, 25]. 
As a test of the method’s discriminatory power, we 
explored gene-knockout (KO) models of neurodevel-
opmental disorders that perturb either the whole brain 
(Cntnap2 KO) or are cerebellum-specific (L7-Tsc1 
mutant). These two lines are well-studied monogenic 
strains used to investigate autism endophenotypes [26]. 
Cntnap2 KO mice have been reported as hyperactive 
and have been shown to display a mild change in gait, 
along with reduced time spent with a novel partner in 
social behavior assays [27, 28]. Mice with Purkinje cell-
specific (L7) null mutation of tuberous sclerosis 1 (Tsc1) 
reportedly exhibit a variety of social deficits compared 
to wild-type littermates, along with changes in gait, 
increased time spent grooming and decreased behav-
ioral flexibility [29–31]. Postural defects have been 
recently observed in many mouse models of autism 
[25], revealing an opportunity for deep phenotyping 
using machine vision methods. Both of these strains 
exhibit similar altered spontaneous and task behavior 
compared to WT when using coarse-grained metrics; 
we applied our deep behavioral phenotyping to test for 
distinct signatures of behavior under spontaneous non-
task conditions.

Conclusions: Our automated pipeline for deep phenotyping successfully captures model‑specific deviations in 
adaptation and movement as well as differences in the detailed structure of behavioral dynamics. The reported defi‑
cits indicate that deep phenotyping constitutes a robust set of ASD symptoms that may be considered for implemen‑
tation in clinical settings as quantitative diagnosis criteria.
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Methods
Experimental animals C57BL/6J male ( n = 60 ) and 
female ( n = 20 ) were ordered from Jackson Laboratory 
(The Jackson Laboratory, Bar Harbor, ME) and accli-
mated from 6 to 20 days in the Princeton Neuroscience 
Institute vivarium before experimental procedures. 
Two mouse models were used to analyze autism-like 
endophenotypes.
L7− Tsc1 : To test cerebellar modulation of natural-

istic behaviors, a Purkinje cell degeneration model with 
a tuberous sclerosis 1 gene mutation was used [29, 32]; 
L7Cre;Tsc1flox/flox . Initially, Tsc1flox/flox ( Tsc1tm1Djk/J, 
Jackson Laboratory stock 005680) mutant mice were 
crossed into L7/Pcp2 mice (B6.129-Tg(Pcp2-cre)2Mpin/J, 
Jackson Laboratory stock 004146) to create a Purkinje 
cell-specific mutation L7Cre;Tsc1flox/+ . The progeny used 
from this cross are control ( L7Cre;Tsc1+/+ ), heterozygous 
( L7Cre;Tsc1flox/+ ) mice and mutant ( L7Cre;Tsc1flox/flox ) 
mice. Only male animals were used for behavior experi-
ments. Mice are of mixed genetic backgrounds (C57Bl/6J, 
129 SvJae and BALB/cJ).

Cntnap2: A knockout of Cntnap2 associated with cor-
tical dysplasia–focal epilepsy, Cntnap2−/− (B6.129(Cg)- 
Cntnap2tm1Pele/J, stock 017482) was bred to C57BL/6J 
(Jackson Laboratory stock 000664) male mice to obtain 
heterozygote ( Cntnap2+/− ) progeny. These litters were 
then bred as a heterozygote strategy to obtain litters 
with wild type (WT, Cntnap2+/+ ), full knockout (KO, 
Cntnap2−/− ) and heterozygote ( Cntnap2+/− ) mice.

All animals were tested in adulthood (> 10 weeks of 
age) and housed with four littermates per cage in Opti-
mice cages (Animal Care Systems, Centennial, CO). Pico-
Lab Rodent Diet food pellets (LabDiet, St. Louis, MO) 
and drinking water were provided ad  libitum. All mice 
were kept in a reverse light cycle (12 h:12 h, light:dark 
with switch at 7:30 am:pm) for behavioral testing.

Open‑field test recordings
Animals were placed in an open-field area measur-
ing 45.7 x 45.7 cm and 30.5 cm in height with a trans-
parent polycarbonate floor 60 cm above the floor and 
60 cm below the ceiling. A Point Grey grayscale cam-
era (12-bit grayscale, 1280× 1024 pixel resolution at 80 
Hz) was used to image animals from below. To avoid 
fixed and dynamic environmental factors, which may 
act as a confounding variables on mouse behavior [10], 
tests were carried out by five testers carefully following 
a protocol which involved weighing the mouse, accli-
mating mouse in a testing room with dim red light and 
placing the mouse into the arena. The open-field arena 
was illuminated with far-red 850 nm LEDs to prevent 
mice from seeing the transparent floor and to minimize 
anxiety triggered by bright illumination. The arena was 

placed 30 cm away from the walls and 15 cm away from 
the doors of ventilated soundproof box to prevent noise 
disturbance. Doors were kept closed during acquisition. 
Room temperature was fixed at 21± 2◦C . Each mouse 
was recorded for 20 min before being returned to group 
housing. Movies were saved as h5 files for further pro-
cessing in MATLAB.

Centroid tracking and clipping
Full-frame movies were imaged at 1280× 1024 pixel 
resolution and contained the entire arena in the field of 
view. Mouse centroids were tracked and movies were 
clipped prior to performing joint tracking. Each movie 
was first sampled at random to generate a median image 
from 50 frames across the recording. Sampling ran-
domly across each movie ensured that the median image 
included only the stationary background and not the ani-
mal. 1000-frame chunks were then loaded into memory 
and each frame was median-subtracted, down-sampled 
and Gaussian-blurred. The centroid of the brightest point 
after this procedure identified the approximate loca-
tion of the centroid of the mouse, and a 400× 400 pixel 
frame centered at these coordinates was kept in memory 
after mean subtraction. Finally the fully resolved clipped 
movie was saved as an h5 file for further analysis, along 
with an information file containing the coordinates used 
to clip the movie from the original frame. As a validation 
of comparability with past work, center of mass tracking 
[33] showed that in all experimental groups, mice cov-
ered the most distance on their first day of exposure to 
the open field, declining on later days [34, 35].

Frame alignment and preprocessing
In total, 350 frames sampled from among clipped mov-
ies were used to train a deep neural network (DNN) 
using LEAP in order to identify the coordinates of the 
snout, center point and tail point (where the tail meets 
the body) of the mouse [21]. Each movie was then labeled 
using this network. The resulting body part coordinates 
were loaded along with each clipped movie and info file, 
and each frame of the original clipped movie was cen-
tered at the tail point and aligned to the tail point-to-
nose axis using image translation and rotation functions 
in MATLAB. The centroid information was updated 
to incorporate the new centroid after translation, and 
the rotation values were also saved for each frame in an 
updated information .mat file.

Body part coordinate identification
We used 660 frames to train a deep neural network 
(DNN) from the aligned clipped movies described in the 
previous methods [21]. The neural network was trained 
iteratively using the LEAP interface, where the network 
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was used to label a sample set of frames that were then 
fixed manually and used as training data in order to 
update the network. In particular, the training set was 
designed to include examples of various postures dur-
ing diverse behaviors that the network failed to label 
in early iterations. Frames with multiple occlusions of 
the head and limbs during grooming were trained with 
a ‘best guess’ of where the body part in question would 
be located, and the network was updated until all pos-
tures were labeled satisfactorily. Overall the network 
was trained to identify 18 body points (snout, ears, 
chin, inner and outer limbs, center, sides, tail point, tail 
center and tail tip), which would be used for behavioral 
classification.

Classical measures using centroid tracking
Mouse centroid coordinates throughout each open-field 
recording were used to calculate basic measures of activ-
ity and spatial occupancy for each experimental trial. The 
centroid was used to calculate the velocity and position 
of the animal at any given time point, and this value was 
further used to calculate the spatial distribution of ani-
mals in the arena and a number of other metrics such as 
center crossings throughout all recordings.

Statistics
All statistics were performed using MATLAB, R (rstatix, 
compositions, npmv, data.table, plyr, ggplot2, ggpubr, car, 
DescTools) or Python 2 and Python 3 (statsmodels, scipy, 
matplotlib, numpy). Data are presented as mean ± SD 
unless otherwise stated. Group mean comparisons were 
performed through two-way mixed analysis of the vari-
ance (ANOVA), repeated-measures ANOVA followed 
up by multiple comparisons post hoc tests using Bonfer-
roni correction, unless otherwise stated or through one-
way ANOVA followed by Tukey’s multiple comparisons 
test. For each comparison the effect size (Cohen’s d) was 
calculated. Normality was tested using the Shapiro–
Wilk test, the equality (homogeneity) of variance across 
groups was tested using Levene’s test, homogeneity of the 
covariance matrices of independent samples was tested 
using Box’s M Test and the significance in variances of 
the differences was determined with Mauchly’s test of 
sphericity.

To investigate differences between the behaviors of 
mice in the open field, we performed analysis to account 
for the compositional nature of the data [36]. First, for 
each mouse, the set of fractions of time spent in each of 
the eight behavioral classes were transformed into iso-
metric log ratio coordinates using the R package ‘com-
positions.’ In this coordinate space, differences between 
groups were analyzed using a nonparametric multivari-
ate test (Wilks’ lambda-type test statistics) from the R 

package ‘npmv.’ To identify the behaviors that differ 
between groups, we calculated the bootstrapped 95% 
confidence intervals ( N = 5000 ) of the log ratio differ-
ences between different groups of mice for each behavior 
[36].

Postural representations over time
Mouse bodies are not rigid and the choice of axis for ego-
centric alignment introduces bias that depends on the 
relative position of body parts used to establish align-
ment. Instead of aligning to a body axis, we used the dis-
tances between all pairs of virtual marker coordinates 
to capture the posture of the animal at each frame. We 
define the configuration of an animal as a set of two-
dimensional coordinates, x and y, which describes the 
position of each tracked keypoint over each frame, n, 
given i, j ∈ {1 : Nkeypoints} . The distance matrix for a given 
frame Dn was calculated as follows.

We used 11 high-confidence virtual markers to represent 
posture. The posture of an animal over a recording is now 
represented as an 11× 11× n array where n is the num-
ber of frames in a given movie. To simplify this matrix, 
we further remove all indices where i ≤ j , as these are 
always self-distances and equal to 0 (when i = j ), or repe-
titions of the same distances (when i < j ). We performed 
online principal component analysis (PCA) on the entire 
set of movies by sampling batches of frames and calculat-
ing the mean and covariance of D for each batch, keep-
ing a running tab of the total mean and covariance across 
all movies and finally finding the eigenvectors of the 
ultimate covariance matrix. We projected the distance 
matrix onto the top 10 of these eigenvectors to produce a 
set of projections that captured about 90% of the variance 
in D with a greatly reduced dimensionality. The 10× n 
array describing the projections along the top ten princi-
pal components was saved for each movie and captured 
the posture of each animal over time.

Temporal representation of behavior
We performed a wavelet decomposition on the pro-
jection matrix containing the top ten posture modes 
in order to find the power spectrum across a dyadi-
cally spaced set of frequencies between 0.25 and 20 Hz. 
The 10× n postural representation was transformed 
into a (10× 25)× n wavelet spectrogram where each 
of the ten postural modes was described by power 
along 25 frequencies. The relative power among dif-
ferent frequencies corresponds to how quickly the 
posture of the animal is changing in time, and power 
in high frequencies means that the projection along a 

(1)Dn(i, j) =
√

((xni − xnj )
2 + (yni − ynj )

2
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particular postural mode is changing quickly. The pos-
tural dynamic representation described by the wavelets 
was the final signal used to compare time points from 
behavioral movies. We used the log of this signal, with 
all values below −3 set to −3 to cluster all recorded 
behavior into fine- and coarse-grained categories that 
were used in all further behavioral descriptions. The 
same transformation was applied to the wavelets from 
each movie during the reembedding step.

Clustering and dimensionality reduction to form 
behavioral classes
Because of the unbalanced nature of our data, where 
extremely specific yet common behaviors like locomotion 
and a particular speed might overwhelm an automated 
clustering algorithm, we first used importance sampling 
to design a representative behavioral sample set, like we 
did with postures for training the DNN. We sampled 
movies from each experimental condition and created a 
dataset that encompassed all of the types of movements 
that were found in our recordings. This was particularly 
important for labeling uncommon behaviors that may 
not have appeared in many movies but were still behav-
iorally interesting.

In order to sample all behaviors present among our 
recordings, we first performed dimensionality reduc-
tion on the time series xi from each movie indepen-
dently using t-distributed stochastic neighbor embedding 
(tSNE) [37]. The resulting maps were sampled to find a 
variety of templates, or examples of the wavelet values, 
that were present in the given movie, ensuring that even 
rare templates were represented. These templates, on the 
order of 100 per movie used, were concatenated to form 
a training set that was then clustered into classes that 
formed the basis of our behavioral labels. We performed 
clustering using two methods that are complimentary 
when visualizing data: tSNE mapping and k-means clus-
tering. First, as previously described [19], we performed 
dimensionality reduction on a training set of ∼ 40, 000 
samples by embedding the 250-dimensional wavelet 
signal into a two-dimensional tSNE map. The final map 
can be used to cluster behaviors using the watershed 
transformation or to visualize the density of the behav-
ioral repertoire used by an animal or group of animals. 
Instead of clustering in the two-dimensional map, we also 
performed k-means clustering on the training set, with 
a target of k = 100 clusters. Comparing the tSNE and 
k-means methods reveals similar results; however, it is 
simpler to embed new samples into the k-means clusters 
by simply finding the nearest neighbor of a given sample 
and assigning it the cluster designation of the nearest 
neighbor.

Posture dynamical fingerprinting
The power in the wavelet spectrum across tracked body 
parts can be used to interpret the results of behavioral 
clustering. For interpretability, the wavelet decomposi-
tion was recalculated using the raw displacement in real 
space for each tracked body part, in lieu of performing 
PCA to find a postural representation. The body part 
wavelet signals associated with time points assigned each 
to a given behavioral class were averaged and reshaped to 
generate a power spectrum. These ‘fingerprints’ detail the 
power in each frequency used in the decomposition for 
each tracked body part and correspond to visible features 
of the behaviors found in each cluster or class.

Calculating behavioral time series and normalized usage 
of behavioral classes
Each 20-min behavioral movie contained approximately 
96,000 frames sampled at 80 Hz. The posture dynamical 
clustering method we described previously was used to 
assign a behavioral label or class, from 1 to 100, to each 
of these frames. The creation of 100 clusters, more than 
were easily distinguishable by the human eye, allowed 
us to manually curate behavioral groups by viewing ran-
domly sampled examples from each cluster. We then 
grouped behaviors into coarse groups that aligned with 
an understanding of behavior and the rodent phenotyp-
ing literature and also were already combined into build-
ing blocks based on our automated method.

Usage during a given experiment or segment of experi-
ment was defined as the normalized histogram over 
behavioral classes. Evolution of behavior over the course 
of an experiment was found by choosing a time window, 
for example 180-s, and calculating this histogram over a 
sliding window of this size over the course of the experi-
ment. The 95% confidence interval was calculated using 
the density values from each individual mouse.

Finding locomotion bouts, steps and phase
Locomotion was first identified using the k-means clus-
tering method. All time points that were identified as 
belonging to the locomotion class were found, and a 
structure of joint trajectories and centroid positions of 
bouts over 500 ms long was created for each movie. Each 
locomotion bout was then further characterized. First all 
bouts were up-sampled by a factor of 100 and Z-scored, 
and the findpeaks function in MATLAB was used to 
locate the time indices of the beginning of each stride for 
each of the four limbs. Peaks were required to be at least 
80 ms apart and with a minimum peak prominence of 0.2 
after Z-scoring. The peaks were used to assign a phase to 
each limb at each time point, where the end of the swing, 
or the start of upward motion of the paw, corresponds to 
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θ = 0 . For each time at which the front right paw has a 
phase of θ = 0 , the phase of each other limb was sampled 
and recorded, along with the centroid speed and angular 
velocity of the animal, and the arena coordinates at which 
the step was performed.

Results
Deep phenotyping of open‑field recordings
We recorded over 700 trials in an open-field arena from 
162 mice (Table 1). Each mouse was recorded for 20 min 
every day for a period of four days. We imaged the mice 
from below a transparent floor to allow observation of the 
paws and base of the tail. Movies were analyzed with a 
semi-supervised behavioral classification and behavioral 
labeling scheme (Fig. 1 and Additional file 1: Fig. S1). In 
the first step, we used a deep neural network to measure 
the posture of each animal over time. Recent advances 
in body part tracking allow for the use of a small set of 
user-generated labels to train a neural network for labe-
ling body parts [21]. We trained the LEAP network with 
660 human-annotated images and achieved position esti-
mates with median confidence probabilities ranging from 
0.91 to 0.98 for the snout, chin, inner and outer limbs, 
and base and tip of the tail. Ears, body center and sides, 
and the tail center point were excluded due to lower 
estimation accuracy (median confidence probability of 
0.81). This pose estimation step resulted in a time series 
of the two-dimensional position of each body landmark, 
xi(t) . The next step in our analysis was a semi-supervised 
clustering of postural dynamics. Our previous work on 
behavioral clustering analyzed the dynamics observed in 
whole images of an animal but did not specifically probe 
the dynamics of individual body parts [19, 20, 22]. We 
adapted this method for use with the body part position 
time series, xi(t) [21] and clustered the dynamics across 
timescales to define eight major classes of behavior in the 
open field (Fig.  1, Additional file  1: Fig. S1). The result-
ing ethogram revealed details not visible from centroid 
tracking alone (Additional file  1: Fig. S1a), namely the 
structure of spontaneous behavior across mesoscopic 
timescales.

The time series xi(t) was rotated and translated into 
the reference frame of the animal by aligning with the 
anterior–posterior axis defined by the snout and tail base 
body parts and transformed into the frequency domain 
using wavelet decomposition. This produced a high-
dimensional output that captured multi-scale (0.25–20 
Hz) changes in posture over time (Additional file 1: Fig. 
S1c). We then performed k-means clustering of this high-
dimensional data on a balanced selection of samples from 
recordings across all male mice. We initially clustered the 
sampled data into k = 100 clusters, enough to achieve 
fine-grained clustering that in some cases was not 

distinguishable by eye. Data from all experiments were 
then clustered by assigning each time point to the cluster 
of its nearest neighbors in the k-means training set.

An exploration of all 100 clusters revealed several 
broader classes of behavior exhibited by mice in the open 
field (Table 2). Similar to recent findings from fruit flies 
[38], we found that mouse behavior could be organized 
into coarse classes with recognizable subclasses repre-
senting variable aspects of behavior. For example, the 21 
clusters that made up the ’locomotion’ class represented 
the diversity of locomotion movements recorded, differ-
ing in velocity, amplitude and speed of limb movement, 
and the coordination of the limbs.

We categorized each of the 100 clusters into one of 
eight behavioral classes (Additional file  1: Fig. S1 and 
Fig.  2a). This manual curation step revealed that time 
spent in the open field was composed of commonly stud-
ied behaviors such as locomotion and grooming, but 
also less distinct movements made for a large fraction of 
the time including spatial exploration and ambling. We 
defined the classes fast exploration and slow exploration 
to characterize periods that are usually unaccounted for 
in traditional measurement paradigms. Fast explora-
tion, for example, included quick turns and sniffs that are 
characteristic of alertness or anxiety, whereas slow explo-
ration included head sweeps and extensions during calm 
periods.

We validated the accuracy and interpretability of 
these classes by visually inspecting randomly sam-
pled movies of behavior from each of the 100 clusters 
and the eight classes. Movie segments were sampled 
from all C57BL/6J male movies (300 20-min mov-
ies overall) and limited to examples where the behav-
ior in question was performed for at least 250 ms or 
20 frames at our frame rate of 80 Hz. Examples from 
the 100 behavioral clusters and eight behavioral classes 
are available in the Supplementary Materials. We also 
compared the eight classes with manual annotations 
by three researchers who were instructed to label each 
frame after reading the descriptions from Table  2 and 
watching selected video snippets. Annotators showed 
high agreement with one another, but annotators and 
the algorithm agreed less often (Additional file  3: Fig. 
S3a, c). Human-vs-algorithm mismatches may have 
arisen from the difficulty of conceptually capturing a 
class with a category name. In addition, the algorithm 
uses spectrograms whose power is concentrated at fast 
timescales, whereas human annotators may use longer 
timescale information. This possibility is supported by 
the fact that the algorithm captured the beginning and 
end of locomotion bouts to match the limb kinematics, 
whereas human annotators would often classify begin-
nings and ends into other behaviors. Human annotators 
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Fig. 1 Processing of video recordings in the open field produces multi‑scale quantitative descriptions of behavior. The pipeline takes virtual 
markers from pose estimation with LEAP to find behavior clusters and generate wavelet signatures. I. A visual representation of the embedding/
clustering steps. Distance matrix calculated between virtual markers per each time frame transforms into the frequency domain and clustered using 
k‑means. II. Raw joint trajectories are used to create wavelet signatures or ’behavioral fingerprints’ by finding the mean power spectrum during each 
behavioral cluster found in part I
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also tended to merge bouts of behavior into a sin-
gle category (Additional file  3: Fig. S3b); for example, 
human annotators might combine a series of ‘rear’ and 
‘climbing’ episodes as a single bout of ‘climbing’ where 
the algorithm made subdivisions based on high-move-
ment hindlimb lifts from the arena floor. Altogether, 
differences between manual annotations and semi-
supervised behavioral classifications were reflected in 
the fractional occupancy by each behavior (Fig. 2b).

Behavioral differences upon introduction to the open‑field 
arena
The fraction of time spent in each cluster in the experi-
mental arena on the first day of exposure (day 1) is shown 
in Fig.  2. Clusters in Fig.  2a are ordered horizontally 
according to their behavioral class and then by median 
centroid speed within each class. Mice spent the most 
amount of time on day 1 locomoting after placement in 
the novel arena, followed by turning, climbing and rear-
ing, but almost no time in the idle state.

Inspection of the occupancy of locomotion modes 
across individuals revealed features that set the Cnt-
nap2 KO and L7-Tsc1 mutants apart from their WT lit-
termates, as well as from the large number of C57BL/6J 
mice, which had the same genetic background. C57BL/6J 
mice were most likely to use the fourth- and fifth-fast-
est locomotion modes at around 0.2 m/s on Day 1. The 
Cntnap2 KO was distinct from WT and heterozygote 
littermates by the enriched usage of the several fastest 
locomotion clusters and a decrease in more moderate 
locomotion (Fig.  2a). This result was in agreement with 
findings that Cntnap2 KO mice are hyperactive [27] and 
accounted for the large distance these mice covered on 
the first day in the open field (Additional file 2: Fig. S2). 
Full mutants from the L7-Tsc1 group showed the oppo-
site trend from Cntnap2 KO mice, spending less time in 

Table 1 Summary of experimental strains and number of mice 
recorded

Each mouse was recorded performing the open-field test on four consecutive 
days

Strain Number 
of mice

C57BL/6J Males 60

C57BL/6J Females 20

Cntnap2 knockout WT Littermates (male) 14

Cntnap2 knockout Heterozygote (male) 15

Cntnap2 knockout Homozygote (male) 10

L7‑Tsc1 WT Littermates (male) 17

L7‑Tsc1 Heterozygote (male) 17

L7‑Tsc1 Homozygote (male) 9

Table 2 Eight coarse behavioral classes are used to describe the 100 fine‑grained clusters obtained from a k‑means clustering of the 
posture dynamical signal

Descriptions were obtained by viewing movies sampling mice from each fine-grained behavioral cluster and grouping movies based on broad qualitative similarities

Class Label Description

Idle Mouse is still, no body parts are moving

Groom Variety of movements that involve repetitive motions, mainly using the front 
limbs and head, but also including tail grooming and hind leg scratches

Slow Explore Slow head turning and sniffing

Fast Explore Quick or directed movements of the head, sniffing, some forelimb placements

Rear Moving into reared posture, slow hover on hind limbs

Climb Reared posture with limb movement occurring mainly at walls and corners

Amble and Turn Slow or uncoordinated locomotion that does not appear regular, single steps

Locomotion Regular directed movement that involves limb coordination

(See figure on next page.)
Fig. 2 Spatial–temporal structure of C57BL/6J male mice behavior in the open field. a Behavioral cluster frequency across mouse models on Day 
1. (left) Heatmap of the total behavioral occupancy of each behavioral cluster; rows are individual animals and columns are behavioral clusters. All 
rows within the 100‑cluster matrix sum to one and describe behavior used over 20 min. Clusters are ordered by median centroid speed for each 
of the eight behavioral classes (bottom). (right) Heatmap of the behavioral occupancy for each of the eight behavioral classes. b Total occupancy 
of behavioral classes in a 20‑min recording quantified by human annotators and by the algorithm. c Log ratio differences for all 8 behavioral 
classes between selected groups. The error bars show the bootstrapped 95% confidence interval (N = 5000, percentile bootstrap). d The spatial 
distribution is shown for each of the eight behavioral classes. e Behavioral usage for each of eight coarse categories plotted for C57BL/6J male 
mice for each of four observation days. All individuals are shown as points, colored traces correspond to the median fraction of time spent in the 
behavior for each day. f The usage of grooming and locomotion behaviors during the 20‑min observation period for Days 1 and 4. Shaded regions 
represent the 95% confidence interval (left). The mean usage (right) for each of eight behavioral classes is shown for Days 1 and 4



Page 9 of 18Klibaite et al. Molecular Autism           (2022) 13:12  

Fig. 2 (See legend on previous page.)
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the fast locomotion clusters than any other group. The 
L7-Tsc1 mutants often used several clusters of slow loco-
motion that were uncommon in either their control lit-
termates or the baseline C57BL/6J mice.

To investigate overall differences in the time spent 
in the eight behavioral classes, we performed a com-
positional data analysis [36]. After transformation of 
the fractions into isometric log ratio coordinates, dif-
ferences between groups were analyzed using a non-
parametric multivariate test (Wilks’ lambda-type test 
statistics). For day 1, we found significant differences at 
α = 0.05 between female and male C57BL/6J mice. The 
behavior of male and female C57BL/6J mice was signifi-
cantly different from Cntnap2 KO mice and their litter-
mates as well as L7-Tsc1 mutants and their littermates, 
except for between female C57BL/6J and Cntnap2 KO 
mice. L7-Tsc1 mutants behaved differently than their 
littermates and Cntnap2 KO mice. No significant dif-
ference in the time spent overall the eight behavioral 
classes between Cntnap2 KO mice and their littermates 
was observed. To gain further insights into the behav-
iors that caused the differences between the groups, we 
calculated log ratio differences between groups for each 
behavior (Fig.  2c) [36]. Female C57BL/6J mice spent 
reduced time in slower behaviors (idle, groom, slow 
explore) and an increased time in locomotion compared 
to male C57BL/6J mice. A similar observation was made 
when comparing L7-Tsc1 mutants with their WT litter-
mates on day 1: they spent less time being idle, grooming 
or slow exploring, but more time rearing, turning and in 
locomotion.

Spatial habituation is reduced in L7‑Tsc1 mutant mice
Mice tend to avoid open spaces in natural environments 
in an attempt to avoid predators. Traditional analyses of 
open-field experiments divide the arena into zones to 
quantify time spent in the open space, near the edges and 
in the highly confining corners. Mice spend most of their 
time at the edges and corners (thigmotaxis). Previous 
researchers have sometimes interpreted thigmotaxis in 
terms of the emotional state of the mouse, often anxiety 
[39]. We found that in these corner positions, mice per-
formed a variety of behaviors including grooming, rear-
ing, climbing and exploration (Fig. 2d).

When first introduced to a new environment, mice 
explored the full space with some preference for cor-
ners. With time and repeated exposure to the same envi-
ronment, mice habituated and spent less time crossing 
through the center of the arena and more time in the 
corners (Additional file 2: Fig. S2c, d). We measured the 
time an animal spent in the corner zones of the arena for 
each of the 4 days of observation to identify the develop-
ment of thigmotaxis. C57BL/6J males, as well as WT and 

heterozygote littermates of L7-Tsc1 mutants and Cntnap2 
KO mice, demonstrated a gradual increase over days in 
time spent in the corners (d range from 0.87 to 2.11 for 
day 1 compared to day 4, repeated-measures ANOVA for 
each group, p < 0.01 ), while C57BL/6J females, L7-Tsc1 
mutants and Cntnap2 KO mice all failed to show a sig-
nificant increase of time spent in the corners (repeated-
measures ANOVA, p = 0.13 , p = 0.28 , p = 0.58 ) 
(Additional file  2: Fig. S2c). Compared to males, female 
C57BL/6J mice spent on average 15% less time in the cor-
ners on day 1 (d = 0.83, one-way ANOVA, groups-by-
day 1, F(7, 154) = 8.83 , post hoc p = 0.008 ) and 26% on 
day 4 (d = 1.43, groups-by-day 4, F(7, 154) = 11.15 , post 
hoc p = 0.0002 ). In summary, a propensity toward cor-
ners after multiple days was sex-dependent in C57BL/6J 
mice and failed to occur in L7-Tsc1 mutant and Cntnap2 
KO mice.

Reduced spatial habituation was also seen in the 
number of center crossings for L7-Tsc1 mutants 
(repeated-measures ANOVA F(3, 24) = 4.24 , p = 0.12 , 
F(3, 48) = 47.76 and F(3, 48) = 34.36 for littermates 
p < 0.001 ). L7-Tsc1 mutant mice showed similar ini-
tial values of center crossing as WT littermates on day 1 
(one-way ANOVA, p = 0.39). But after four days of habit-
uation, mutants showed a tendency to cross to and from 
the center zone more frequently than WT littermates 
(one-way ANOVA, groups-by-day 4, post hoc p = 0.07 ) 
(Additional file 2: Fig. S2d).

Behavioral habituation is reduced in L7‑Tsc1 mutant mice
Mice also modulate specific behaviors as they habituate 
to a new environment. All experimental groups trave-
led significantly less on the second day compared to the 
first day ( d = 1.5, 2.1, 2.8, 1.8 for female, male C57BL/6J 
mice, Cntnap2 KO and L7-Tsc1 mutant mice, repeated-
measures ANOVA for each group, p < 0.05 ) (Additional 
file  2: Fig. S2b). We found that both female and male 
C57BL/6J mice increased the time they spent idling, 
grooming, exploring and rearing on day 5 over day 1 
( d = 0.9, 1.2, 1.6, 0.5 for females and d = 0.9, 1.6, 1.6, 0.7 
for males; repeated-measures ANOVA for each group, 
p < 0.01 ) and decreased the time they spent locomot-
ing ( d = 1.9 for females and d = 3.2 for males, p < 0.01 ) 
in the same arena. The largest day-on-day shift occurred 
between the first and second day in both female and male 
C57BL/6J mice (Fig.  2e and Additional file  4: Fig. S4a). 
Male C57BL/6J mice in addition spent significantly less 
time climbing and turning ( d = 0.5 , repeated-meas-
ures ANOVA, post hoc p < 0.01 and d = 2.0 , post hoc 
p < 0.01 ) in contrast to female C57BL/6J mice (repeated-
measures ANOVA, F(4, 72) = 1.36 , p = 0.51 and 
F(4, 72) = 2.47 , p = 0.17).
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Behavior also changed within the 20-min observa-
tion period of each experiment (Fig.  2f ). The pattern of 
behavioral change exhibited by C57BL/6J mice within an 
observation period was similar to the across-day change: 
locomotion, climbing and turning decreased over time 
while idling, exploring and grooming increased (Fig. 2e). 
A comparison of within-day habituation curves for each 
of eight behavioral classes over five days of recording 
revealed this trend across all behaviors, with females per-
forming active behaviors more than males for the entire 
duration of each experiment (Additional file 4: Fig. S4).

Cntnap2 KO mice were unaltered in their ability to 
habituate within-day and their behavior across days was 
not significantly different from their littermates (two-
way mixed ANOVA idle: F(2, 36) = 2.96 , p = 0.07 ; 
slow explore: F(2, 36) = 1.92 , p = 0.16 ; fast explore: 
F(2, 36) = 1.56 , p = 0.22 ; rear: F(2, 36) = 0.09 , p = 0.92 ; 

climb: F(2, 36) = 2.24 , p = 0.12 ), although they did 
groom significantly more often on day 2 compared to 
WT littermates (one-way ANOVA, F(2, 36) = 6.07 , 
post hoc p = 0.02 ) (Fig. 3 and Additional file 5: Fig. S5). 
In contrast to Cntnap2 KO mice, L7-Tsc1 mutant mice 
showed reduced within-day and across-day habituation 
(Fig. 3 and Additional file 6: Fig. S6).

The defect in L7-Tsc1 mutant habituation was most 
apparent in locomotion and turning behaviors (Fig. 3 and 
Additional file  6: Fig. S6). These mice did not show the 
expected reduction in turning either over days or within 
the 20-min observation period. Turning was used more 
often on day 1 (one-way ANOVA, F(2, 40) = 5.62 , post 
hoc p = 0.03 ) and did not decrease to the same degree 
over the observation time as WT and heterozygote lit-
termates. Locomotion decreased over time but to a lesser 
degree and the level of locomotion in the L7-Tsc1 mutant 

Fig. 3 Behavioral usage over time for Cntnap2 KO and L7‑Tsc1 mutant mice. a, b Behavioral usage for each of eight coarse categories plotted for 
a Cntnap2 KO and b L7‑Tsc1 mutant mice for each of four observation days. All individuals are shown as points, colored traces correspond to the 
median fraction of time spent in the behavior for each day. c The usage of turning and locomotion behaviors during the 20‑min observation period 
for Days 1 through 4 for Cntnap2 knockouts and littermates (left) and L7‑Tsc1 mutants and littermates (right). Colors indicate the strain (blue—WT, 
green—heterozygote, orange—homozygote). Shaded regions represent the 95% confidence interval
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mice was significantly higher than in WT littermates for 
days 1, 2 and 3 (one-way ANOVAs, groups-by-day, all 
post hoc p < 0.05).

Grooming behaviors vary in a complex manner 
in neurodevelopmental mouse models
Grooming refers to a variety of repetitive self-touching 
behaviors, and mouse self-grooming has been used 
as an animal model for the self-stimulating behaviors 
observed in autism [40]. Previous reports have lim-
ited quantification to 10 min of observation and have 
not distinguished different types of self-grooming 
or reported sex differences [29, 41, 42]. In our four-
day recording period, we observed that all mouse 
groups groomed more frequently as the days passed 
(Figs.  2e,  3a, b,  4, Additional file  4: Fig. S4a, Addi-
tional file  5: Fig. S5a and Additional file  6: Fig. S6a), 

with larger increases in males compared with females 
(males d = 1.6 and females d = 0.6 day 1 compared to 
day 4, repeated-measures ANOVA, F(4, 236) = 32.61 
and F(4, 72) = 9.60 , post hoc p < 0.01 ). We further-
more found that within-model contrasts (male v. 
female, Cntnap2 KO v. Cntnap2 WT, L7-Tsc1 mutant 
v. L7-Tsc1 WT) were modest on day 1 but grew con-
siderably over the next three days. The two neurode-
velopmental mouse models showed opposite trends: 
Cntnap2 KO mice starting from day 2 groomed more 
frequently than their littermates (one-way ANOVA 
day 1: F(2, 36) = 0.07 , p = 0.93 ; day 2: F(2, 36) = 6.07 , 
p = 0.02 ), whereas L7-Tsc1 mutants mice groomed 
much less frequently than littermates cross all days 
(one-way ANOVA day 1: F(2, 40) = 5.28 , p = 0.04 ; day 
4: F(2, 40) = 5.27 , p = 0.04 ) (Fig. 4).

Fig. 4 Habituation of grooming behaviors a The usage of grooming behaviors during the 20‑min observation period for Days 1 through 4 for 
Cntnap2 and L7‑Tsc1 mice. Colors indicate the strain (blue—WT, green—heterozygote, orange—homozygote). Shaded regions represent the 95% 
confidence interval. b Stacked bar plots showing the mean frequency across mice for each of five grooming behaviors across Days 1 through 4 with 
corresponding stacked bar plots below showing the normalized mean frequency for each of five grooming behaviors (c)
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The grooming class could be further divided into sev-
eral modes of grooming: body grooming, face/paw 
grooming/licking, small quick movements, foot scratch-
ing and a mixture mode to account for time spent read-
justing between modes. To validate grooming modes, 
human annotators were presented with movie segments 
that included grooming based on the algorithm and then 
were asked to annotate videos frame by frame (Addi-
tional file  3: Fig. S3d). A comparison indicated that the 
algorithm emphasized shorter timescales and identified 
more mixed bouts of grooming than human annotators 
(Additional file 3: Fig. S3e). The total number of episodes 
spent grooming was normalized to 1 to obtain a relative 
usage of these grooming modes (Fig. 4b). Despite differ-
ences in total grooming frequency between C57BL/6J 
males and females, their relative grooming-mode fre-
quencies were similar and showed the same trend over 
time. Across days, body grooming increased in relative 
frequency (repeated-measures ANOVA, F(1, 77) = 8.62 , 
p = 0.02 ) while face grooming and quick grooming 
movements became less frequent (repeated-measures 
ANOVA, F(1, 77) = 8.74 , p = 0.02 and F(1, 77) = 6.96 , 
p = 0.048).

Both neurodevelopmental mouse models showed 
altered distributions of the grooming behaviors. Cnt-
nap2 KO mice exhibited more body grooming compared 
to their WT littermates on day 2 (one-way ANOVA 
F(2, 36) = 7.11 , post hoc p = 0.02 ). L7-Tsc1 mutant mice 
showed the opposite effect with less body grooming on all 
days of observation (one-way ANOVA, F(2, 40) = 5.53 , 
each day, post hoc p < 0.05 ) and more face/paw groom-
ing on days 3 (one-way ANOVA F(2, 40) = 7.59 , post 
hoc p = 0.002 ) than WT littermates (Fig. 4c).

In all groups except for L7-Tsc1 mutants, grooming 
frequency also increased dramatically within each day’s 
observation period. Cntnap2 KO mice and their litter-
mates groomed with similar frequency at the start of 
each day’s observation, but knockouts increased the time 
spent in grooming at a greater rate during each 20-min 
period (Fig. 4a). L7-Tsc1 WT and heterozygote mice like-
wise groomed more within each day’s observation period, 
but L7-Tsc1 mutant mice did not. These measurements 
show that systematic patterns of variation in grooming 
within each day of observation typically exceeded the 
variation across days.

L7‑Tsc1 mutant and Cntnap2 KO mice show travel 
differences and gait defects
All experimental conditions showed reduced amounts of 
locomotion after day 1. However, the distribution of loco-
motion speeds depended on condition. In C57BL/6J mice, 
female mice moved on average 11% faster ( d = 1.21 , 
one-way ANOVA F(7, 154) = 33.47 , p < 0.001 ) than 

their male counterparts. Female C57BL/6J mice more 
often locomoted at speeds above 0.3 m/s than males 
(Fig. 5a). Cntnap2 KO mice did not differ from their lit-
termates in the median velocity ( p = 0.11 ) or distance 
traveled ( p = 0.12 ) (Additional file  2: Fig. S2), although 
they did locomote at speeds above 0.3 m/s significantly 
more often on day 1 (one-way ANOVA, F(2, 36) = 11.58 , 
post hoc p < 0.01 ). In contrast to all other experimental 
groups, L7-Tsc1 mutant mice kept their median velocity 
across days (repeated-measures ANOVA F(3, 24) = 1.26 , 
p = 0.31 ) compared to WT littermates ( F(3, 48) = 9.46 , 
p < 0.001 ). The distance that L7-Tsc1 mutants traveled 
on days 1 to 4 was not significantly different from their 
WT littermates (one-way ANOVA, group-by-days, post 
hoc p = 0.60 , p = 0.33 , p = 0.66 , p = 0.13 ). They did so 
by moving more often (one-way ANOVA, group-by-day 
1, post hoc p = 0.02 ) but at 19% slower median veloc-
ity ( d = 1.55 , one-way ANOVA, group-by-day 1, post 
hoc p = 0.001 ) (Fig.  2c and Additional file  2: Fig. S2a): 
L7-Tsc1 mutant mice significantly increased the number 
of locomotion bouts at 0 - 0.2 m/s (one-way ANOVA, 
group-by-day, each day post hoc p < 0.001 ), a difference 
that persisted across all four days of testing (Fig. 5a).

Nearly all children with autism show motor impair-
ment [43, 44], with gait following a locomotor pattern 
resembling cerebellar ataxia [45, 46]. To explore the 
kinematics of gait, we identified all locomotion bouts 
(Figs.  1g, 5b) and analyzed individual body part trajec-
tories along the anterior–posterior axis. As expected, 
the front and hind paws moved in an oscillating pattern 
in the frame of reference of the mouse (Fig. 5b) [47]. We 
also found that the tail often oscillated as well, matching 
the frequency of the paw oscillation.

Mouse locomotion could be broken into two differ-
ent gaits depending on the speed. At very slow speeds 
( v < 0.1 m/s), C57BL/6J mice used a walking gait with 
paws moving in sequence, each for approximately one 
quarter of the walking cycle (Fig. 5b). The order of move-
ment and coordination in the walking gait was Front 
Right, Hind Left, Front Left, Hind Right. At higher 
speeds, mice transitioned to a trot gait with alternat-
ing diagonal pairs of legs moving together. Left–right 
pairs of legs were not in phase with each other within 
the gait cycle. We found that for speeds above ∼ 0.1 
m/s, C57BL/6J mice had an average phase difference of 
∼ 0.5 rad or about 8% of the gait cycle. This phase offset 
decreased with speed from about ∼ 1 rad at v = 0.1 m/s 
to ∼ 0.25 rad at v = 0.4 m/s.

The two types of neurodevelopmental mutants dis-
played differences in both the walk-to-trot transition 
speed and the phase difference between opposite-limb 
(FL/HR and FR/HL pairs) movements. Cntnap2 KO mice 
showed a similar transition speed of about 0.1 m/s as 
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their littermates. In contrast, L7-Tsc1 mutants used the 
walking gait much more and transitioned to the trotting 
gait at a much higher velocity of ∼ 0.2 m/s. The phase 

difference during trotting was larger for both neurode-
velopmental mouse models. Cntnap2 KO had a phase 
difference at 0.2 m/s of 0.7 rad compared to a difference 

Fig. 5 Locomotion kinematics are altered in the neurodevelopmental mouse models. a Stacked bar plots showing the mean frequency for each 
of four speed bins on Days 1 through 4. b Left: Examples of the motion of the limb and tail points during 5‑s bouts of locomotion for C57BL/6J, 
Cntnap2 KO and L7‑Tsc1 mutants. The trajectory of the centroid of the mouse is color coded by time. Time series of the position of each body part 
projected onto the anterior–posterior axis is plotted. The start of each gait cycle is marked with a dashed black line and defined using the front 
right paw (FR, red). Center: An example image of a mouse is labeled with colors used for each body part, and the axis of body alignment used 
when segmenting strides is shown as the axis between the nose and tail base point (TP). Right: Polar plots of the phase θ of the gait cycle in which 
each paw reaches a minimum along the alignment axis in the body frame. The front right paw is used to define θ = 0 . The radial axis indicates the 
speed of locomotion, which was used to bin the phase results, and the size of the circles indicate how frequent that particular speed was for a given 
condition. For Cntnap2 KO and L7‑Tsc1 mutants, the colors of dots correspond to the four labeled paw points
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of 0.5 rad for their littermates. L7-Tsc1 mutants had an 
even larger difference of 1.0 rad at 0.2 m/s compared to 
0.5 rad for their littermates.

Discussion
We have found that the observation of mice in an open 
arena is sufficient to characterize behavior on scales 
ranging from sub-second individual limb movements to 
multi-day adaptive change. The two neurodevelopmen-
tal mouse models we used, Cntnap2 KO and L7-Tsc1 
mutants, differed in distinct ways from WT mice on 
within-day measures of behavior, including gait defects 
and self-grooming. In addition, L7-Tsc1 mutant mice 
showed defects in multi-day behavioral evolution. Thus 
our methods can quantify complex behavior and differ-
entiate between mouse models’ capacity to express these 
phenotypes (Additional file 7: Fig. S7).

Animal behavior is high-dimensional. Changes in 
movement, transitions between states and adaptive 
change are most easily observed by different metrics on 
multiple timescales. Our method for semi-supervised 
behavioral classification allows exploration of all three 
types of dynamics from a single video recording. Such 
deep phenotyping can capture rich behavioral readouts 
that illuminate the effects of genetic and experimental 
perturbations in naturalistic environments.

Previous methods for analyzing freely moving behav-
ior have been limited to restricted feature sets. Observa-
tions from freely moving animals have focused on simple 
measures, such as spatial location, using footprint meas-
urement and centroid tracking. Detailed limb movements 
have been observed in constrained environments such as 
a corridor or treadmill to model the relationship between 
gait and postural features [47, 48], but this approach does 
not capture movement in a more natural context. Our 
approach allows all these types of measurements to be 
made at once in an automated manner.

The simplicity of the open field allows rapid characteri-
zation without need to train mouse or experimenter. This 
level of automation and standardization may contribute 
to differences with past work. For example, we found that 
L7-Tsc1 mutant mice showed reduced grooming com-
pared with wild types, yet past studies report increased 
grooming. We found that grooming included many sub-
states that involved different movements. Differences 
in how human scorers classify such states may lead to 
laboratory-to-laboratory variability in quantification. 
Additional sources of variation include conditions that 
facilitate grooming, such as spraying mice with water or 
including bedding material in the chamber. Conversely, 
our automated methods incorporated a temporal win-
dow for clustering, so that singular quick grooming 

movements might have been missed. Further study is 
needed to reconcile these approaches.

Previous studies of mouse behavior have identified 
large sex differences in pairwise interactions (i.e., same-
sex vs. opposite-sex interactions). Our analysis identified 
robust sex differences even in the absence of a specific 
task or another mouse in the chamber. The male-versus-
female difference was also seen in Cntnap2 KO-versus-
WT mice, where knockouts tended to display increased 
activity. In contrast, L7-Tsc1 mutant mice showed a 
reversed phenotype from the Cntnap2 KO mice and pre-
sented with slower and less coordinated behaviors. Our 
findings recall the observation that men are identified 
as being on the autism spectrum four times as often as 
women, and would be consistent with the possibility that 
regulation of some genes (by our measures, Cntnap2) but 
not others (Tsc1) might have differential effects by sex 
[49].

Mouse models of autism are typically generated from 
a focal perturbation affecting as little as one gene. How-
ever, a single-gene disruption can still affect many cell 
types and brain regions at once. Cntnap2 is expressed 
in neocortex, striatum, hippocampus and cerebellum 
[27]. Therefore behavioral changes in Cntnap2 KO mice 
may arise from perturbation of any of these regions or 
a combination of them. In contrast, L7-Tsc1 mutant 
mice exhibit reduced Tsc1 expression specifically in 
Purkinje cells, thus influencing behavior through cerebel-
lar impacts on brain activity. The patterns of disruption 
are therefore likely to differ. For example, Cntnap2 KO 
mice show reductions in neocortical spine number [50] 
whereas L7-Tsc1 mutant mice show increased neocorti-
cal dendritic spine density [51].

The ability to simultaneously characterize movement 
kinematics and larger-scale features of behavior, even 
without a task condition, has particular relevance to the 
study of autism. Movement disruptions appear in 80% of 
children with autism [43, 44], despite the fact that move-
ment is not considered part of the classic triad of defin-
ing symptoms. Injury to the cerebellum at birth leads to 
a sharply increased likelihood of autism, raising the pos-
sibility that the same structure that regulates smooth 
movement may also play a key role in driving the devel-
opment of higher-level behavioral capacity [52]). In this 
way, movement and cognitive maturation may use shared 
neural substrates. Our analysis of Cntnap2 KO and 
L7-Tsc1 mutant mice reveals a shared disruption to spe-
cific parameters of gait arising from different genetic per-
turbations, one brain-wide and one cerebellar. We find 
that each model exemplifies different features: hyper-
activity in one case, and failure to adapt in the other. In 
the future it may be possible to use alterations in move-
ment to aid in the classification of autistic individuals. In 



Page 16 of 18Klibaite et al. Molecular Autism           (2022) 13:12 

addition, early life identification of motor symptoms may 
allow rapid risk stratification for early intervention.

Mouse tests for autism-like phenotypes were selected 
for their putative relevance to human behavior and for 
their ease of administration. However, it is often diffi-
cult to probe system-level mechanisms responsible for 
the observed alterations in performance. For example, 
Cntnap2 KO mice [27, 28] show disruptions on a wide 
array of tests, none of which are well studied at a cir-
cuit level. Deep behavioral phenotyping allows system-
specific defects (gait) and higher-order performance to 
be assayed within the same behavioral recording. In this 
way our methods open the future possibility of inves-
tigating complex behavior with substantially increased 
depth, both of phenotyping and of neural mechanism. 
The power of these methods will increase as they are 
integrated with specific task or test conditions, as well as 
neural recording and perturbation.

Limitations
ASD patients show sex-dependent differences in behavior 
and neurobiology; we used wild-type mice of both sexes 
and male ASD-model mice for experiments. Therefore, 
conclusions driven from our results might not reflect 
behavioral alterations in the female ASD-model mice. 
Approximately a dozen mouse models of the genetic risk 
factors for ASD have been developed, of which we stud-
ied only two. The pipeline, which provides a solution that 
automatically classifies complex behaviors in large data-
sets, can be applied across available strains to facilitate 
systematic studies of behavioral mechanisms, determine 
heritable components and potentially link mouse phe-
notypes to human psychiatric symptoms. This method 
also enables longitudinal and rescue studies of mouse 
behavioral dynamics. Finally, we did not track the social 
behavior. A recent implementation of SLEAP [53] allows 
multiple-animal pose tracking and enables future stud-
ies of posture dynamics in the social context. Finally, this 
study was done without any task condition and does not 
explore complex interactions between a mouse and its 
environment or with other mice. Such studies are needed 
to further compare and contrast mouse and human 
behavior.

Conclusions
Our approach to characterizing behavior, which ena-
bles fine spatiotemporal disambiguation of behaviors 
enriched in animal models of ASD, may also be useful 
in the understanding of human autism and other neu-
rodevelopmental disorders. Predictors of autism such 
as unusual patterns of sensory response are known to 
emerge in the first year of life. Deep behavioral phenotyp-
ing can expand the range of observations without need 

for a specific task. These methods may also be extended 
to include social interactions using methods for multi-
individual tracking such as SLEAP [53]. By character-
izing fine-grained movement, limb coordination and 
long-timescale adaptation, it may be possible to iden-
tify distinctive features of behavior that precede a for-
mal diagnosis of ASD. Such information can potentially 
stratify at-risk children according to different points of 
departure from neurotypical paths of cognitive and social 
development. As the brain-wide mechanisms of autism 
and other neurodevelopmental disorders become better 
understood, such stratification may aid in the better tar-
geting of treatment.
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Additional file 1: Fig. S1. a Ethogram of behavioral classes produced 
from our behavioral clustering and classification pipeline based on the 
posture and movement of animals over time. Below, the same time series 
is visualized as a raster to demonstrate behavioral usage during a 2‑min 
period. b Mouse centroid speed over the same 2‑min period shown in 
panel (a). c Raw power for select body parts. N: nose, FR: front right foot, 
FL: front left foot, HR: hind right foot, HL: hind left foot, TT: tail tip. d Posi‑
tion time series for the nose, front and hind feet, and tail tip (left) during 
two behaviors. The y position, the anterior–posterior axis, is shown for a 
locomotion bout (center). The x position, the medial–lateral axis, is shown 
for a grooming bout (right). We use the full 2D position of each body part 
in our analyses, but show only the dominant axis for these behaviors here 
for brevity. e Normalized power spectra for several tracked body parts for 
each of the eight behavior classes. f Visualizations of the tSNE embedding 
for a subselection of data show how the methods are related.

Additional file 2: Fig. S2. Common metrics for open‑field performance 
plotted for all conditions. a Median velocity during locomotion, b Median 
distance covered during 20 min in the open field. c The total time spent 
in the corner regions for each mouse on each day displayed as a box plot. 
The median value is shown as a solid line in the color corresponding to 
the given condition. d The number of center crossings for each mouse on 
each day displayed as a box plot. The median value is shown as a solid line 
in the color corresponding to the given condition.

Additional file 3: Fig. S3. Annotation of mouse behavioral classes. a 
Ethogram of behavioral classes produced from MouseMotionMapper 
(MMM) and individual annotators. b Typical agreements and discrepan‑
cies between MMM and human annotators synchronized with body parts 
trajectories. c Quantification of the agreement overlap between individual 
annotators and MMM during locomotion and across all behavioral classes. 
d Ethogram of grooming modes produced from MMM and individual 
annotators. e Quantification of the agreement overlap between individual 
annotators and MMM during face/paw grooming and across all grooming 
modes.

Additional file 4: Fig. S4. Behavioral summary of C57BL/6J male and 
female mice. a Behavioral usage for each of eight coarse categories 
plotted for C57BL/6J male(top) and female (bottom) mice for each of 
five observation days. All individuals are shown as points, colored traces 
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correspond to the median fraction of time spent in the behavior for 
each day. b The mean usage of each coarse behavioral class during 20 
min of observation for each of five days. Shaded regions represent 95% 
confidence interval.

Additional file 5: Fig. S5. Behavioral summary of Cntnap2 KO mice. a 
Behavioral usage for each of eight coarse categories plotted for Cntnap2 
KO WT (top), heterozygote (middle) and homozygote (bottom) mice for 
each of four observation days. All individuals are shown as points, colored 
traces correspond to the median fraction of time spent in the behavior 
for each day. b The mean usage of each coarse behavioral class during 20 
min of observation for each of four days. Shaded regions represent 95% 
confidence interval.

Additional file 6: Fig. S6. Behavioral summary of L7‑Tsc1 mutant mice. 
a Behavioral usage for each of eight coarse categories plotted for L7‑Tsc1 
mutant WT (top), heterozygote (middle) and homozygote (bottom) mice 
for each of four observation days. All individuals are shown as points, 
colored traces correspond to the median fraction of time spent in the 
behavior for each day. b The mean usage of each coarse behavioral class 
during 20 min of observation for each of four days. Shaded regions repre‑
sent 95% confidence interval.

Additional file 7: Fig. S7.  Summary of behavioral phenotypes of experi‑
mental groups.
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