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Abstract 

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with considerable clinical hetero-
geneity. This study aimed to explore the heterogeneity of ASD based on inter-individual heterogeneity of functional 
brain networks.

Methods: Resting-state functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange 
database were used in this study for 105 children with ASD and 102 demographically matched typical controls (TC) 
children. Functional connectivity (FC) networks were first obtained for ASD and TC groups, and inter-individual devia-
tion of functional connectivity (IDFC) from the TC group was then calculated for each individual with ASD. A k-means 
clustering algorithm was used to obtain ASD subtypes based on IDFC patterns. The FC patterns were further com-
pared between ASD subtypes and the TC group from the brain region, network, and whole-brain levels. The relation-
ship between IDFC and the severity of clinical symptoms of ASD for ASD subtypes was also analyzed using a support 
vector regression model.

Results: Two ASD subtypes were identified based on the IDFC patterns. Compared with the TC group, the ASD sub-
type 1 group exhibited a hypoconnectivity pattern and the ASD subtype 2 group exhibited a hyperconnectivity pat-
tern. IDFC for ASD subtype 1 and subtype 2 was found to predict the severity of social communication impairments 
and the severity of restricted and repetitive behaviors in ASD, respectively.

Limitations: Only male children were selected for this study, which limits the ability to study the effects of gender 
and development on ASD heterogeneity.

Conclusions: These results suggest the existence of subtypes with different FC patterns in ASD and provide insight 
into the complex pathophysiological mechanism of clinical manifestations of ASD.

Keywords: Autism spectrum disorder, Functional magnetic resonance imaging, Functional connectivity, k-means 
clustering, Subtype

Introduction
Autism spectrum disorder (ASD) is an early-onset neu-
rodevelopmental disorder. Its core symptoms are social 
interaction and communication impairments, repeti-
tive, stereotyped behaviors, and narrow interests [1]. The 
etiology of ASD is unclear, and current research gener-
ally indicates that the clinical presentation of individuals 
with ASD is highly heterogeneous [2–4]. Due to the high 
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clinical heterogeneity of ASD, the diagnostic criteria have 
evolved over the years and now include a significantly 
broader spectrum [5]. Therefore, the interpretation of the 
heterogeneity pattern of ASD is a pressing issue.

There is a general consensus that ASD is related to 
an atypical pattern of brain functional networks [6, 7]. 
Abnormal resting-state brain functional connectivity 
(FC) patterns in ASD have been successively identified 
in various brain regions and networks, such as the amyg-
dala, visual network, and default-mode network [8–10]. 
Both reduced and increased patterns of FC in the brain 
of individuals with ASD have been reported, which are 
associated with developmental stage [7, 11–14]. Although 
studies continue to report atypical FC in the brain of indi-
viduals with ASD, the results are often inconsistent [15], 
which hinders the study of neurobiological mechanisms 
of ASD and the identification of effective biomarkers to 
guide clinical diagnosis and treatment of ASD.

Studying inter-individual differences in brain networks 
is essential for understanding complex psychiatric disor-
ders [16]. For example, studies of inter-individual differ-
ences in functional brain networks have found that it can 
be used to predict schizophrenia positive symptoms [17]. 
Highly heterogeneous brain structures are reported in 
ASD, and there is a link between heterogeneity of brain 
structures and clinical symptoms, which together influ-
ence the ASD classification [18]. In addition, subtyping 
of ASD is a direction to study the high heterogeneity of 
ASD. Performance of supervised learning for prediction 
of Autism Diagnostic Observation Schedule (ADOS) 
scores can be improved by differentiating multidimen-
sional neuroanatomical subtypes [19]. ASD subtype’s 
unique brain–behavior relationships were reported in 
the FC-based ASD subtype study [20]. ASD subtyping 
studies have been widely applied to analyze the func-
tional and structural networks of the ASD brain and have 
explained to some extent the heterogeneity of ASD [16]. 
However, to the best of our knowledge, existing studies 
on ASD subtypes in the field of ASD functional brain 
networks still distinguish subtypes solely rely on ASD 
brain network characteristics, ignoring the brain network 
information provided by the typical controls (TC) group. 
Previous studies have suggested that the heterogeneity 
of atypical FC patterns in ASD stems from idiosyncratic 
distortions of the FC pattern [21]. Therefore, subtyping 
studies based on inter-individual deviation could bet-
ter reveal the heterogeneous pattern of individuals with 
ASD.

This study aimed to explore the heterogeneity pattern 
of brain functional network among individuals with ASD 
based on the inter-individual deviation between ASD 
and TC. Based on the FC network for each individual, 
the inter-individual deviation of functional connectivity 

(IDFC) of each individual with ASD from the TC group 
is calculated. Individuals with ASD were then clustered 
based on IDFC to obtain ASD subtypes. The relationship 
between IDFC and clinical symptoms of ASD was also 
assessed. We predict that individuals with ASD have dif-
ferent functional network patterns of IDFC and can be 
subdivided into subtypes based on the IDFC.

Materials and methods
Participants
Resting-state functional magnetic resonance imag-
ing (fMRI) and phenotype data from the open-access 
Autism Brain Imaging Data Exchange database (ABIDE, 
fcon_1000.projects.nitrc.org/indi/abide/) were used 
[22]. The participant selection principles were the same 
as in our previous study [23]. Exclusion criteria include: 
(a) subjects younger than 7  years of age or older than 
12 years of age; (b) female subjects (female subjects were 
less than 10% of the total data set); (c) subjects with 
excessive head motion during resting-state scanning 
(i.e., motion greater than 2 mm translation and 2 degrees 
of rotation, and greater than 50% of frames with large 
frame-wise displacement [FD]); (d) subjects with missing 
information on full intelligence quotient (FIQ), handed-
ness or eye status values; and (e) subjects with low-qual-
ity scanned structural images. The remaining subjects 
maximized p values for group differences in age, handed-
ness, FIQ, eye status, and mean FD by using a data-driven 
algorithm to create well-matched datasets of ASD and 
TC groups within each site. Data from centers with fewer 
than 10 subjects per group were finally removed. The 
final remaining 105 children with ASD and 102 TC from 
6 centers were applied to the study. Participant demo-
graphic details are summarized in Table 1.

Data preprocessing
The advanced edition of Data Processing Assistant 
for Resting-State fMRI (DPARSF A, http:// rfmri. org/ 
DPARSF) toolbox [24] was used to preprocess the rest-
ing-state fMRI data of the subjects. The same preprocess-
ing steps as in our previous study were used [23]. Main 
steps include: the first 10 volumes of each subject being 
removed, slicing time corrected, spatial realigned (par-
ticipants with translational or rotational motion higher 
than 2  mm or 2° were excluded), normalized to stand-
ard Montreal Neurological Institute (MNI) stereotaxic 
space, and resampling to 3 × 3 × 3   mm3, spatial smooth-
ing with an isotropic Gaussian kernel (full width at half 
maximum = 6 mm), linear trends were removed, poten-
tial motion artifacts were resolved by using the 3dDe-
spike algorithm in Analysis of Functional NeuroImaging 
(https:// afni. nimh. nih. gov/ afni/), potential nuisance sig-
nals were regressed (Friston-24 motion parameters, 
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white matter, and cerebrospinal fluid signals) [25–27], 
and bandpass filtering was carried out at 0.01–0.1  Hz. 
In addition, to reduce the effect of head movement on 
the FC analysis [28], we examined the percentage of 
high head movement time points for each subject. Time 
points with a mean head movement displacement greater 
than 0.5 mm and their preceding and following two time 
points were marked as high head movement time points 
[29]. Subjects with more than 50% high head movement 
time points were not included in the following analysis 
[30, 31].

Inter‑individual deviation of functional connectivity
The time series data were extracted according to a 
264-region of interest (ROI) partitioning scheme, and 
10 functional networks were delineated [32, 33]. The 
functional networks include the motor and somatosen-
sory network (SMN), cingulo-opercular network (CO), 
auditory network (AN), default-mode network (DMN), 
visual network (VN), fronto-parietal network (FPN), sali-
ence network (SAN), subcortical network (SUB), ventral 
attention network (VAN), and dorsal attention network 
(DAN). ROIs that are not part of the 10 functional net-
works are included in the uncertain network (UND). A 
264 × 264 Pearson correlation matrix was constructed 
for each subject as a measure of inter-regional FC, and 
we set the negative correlation to zero due to the current 
ambiguity about the meaning of negative correlation [34, 
35]. To prevent skewing of the data distribution due to 
zeroing of negative correlation, we tested the reliability 
of the results by retesting the results using the correla-
tion matrix without removing negative correlation (see 

Additional file  1). The IDFC of subject i from the ASD 
group at ROI k is defined as:

Fik denotes the overall FC profile of brain region k of 
subject i with ASD defined by the functional architecture, 
i.e., Fi(k,:). The vector Fi(k,:) represents the k-th column of 
the correlation matrix of ASD subject i, which stores the 
correlation coefficients of brain region k with other brain 
regions. Similarly, Fjk denotes the overall FC profile of 
brain region k of subject j in the TC group. To character-
ize the functional deviations of ASD from the TC group, 
the cosine distances of the overall FC profile of region k 
between subject i from the ASD group and all subjects 
in the TC group were calculated and the mean value was 
used to describe the IDFC of ASD subject i at region k. 
At the region level, the IDFC matrix V_roi between the 
ASD and TC group was obtained by calculating the IDFC 
for all regions within the ASD group for each subject. The 
IDFC matrix V_net at the network level was obtained by 
averaging the IDFC of regions within the same network 
(Fig. 1A).

Clustering analysis based on IDFC
We hypothesized the existence of subtypes of ASD with 
high heterogeneity of functional brain network charac-
teristics and clustering analysis was performed on 105 
individuals with ASD, as illustrated in Fig. 1B. The analy-
sis was performed using the k-means clustering method, 
selecting network-level IDFC as the clustering feature, 
because analyzing the number of features from the 
region level greater than the number of subjects would 
lead to unreliable clustering results. The IDFC matrix 
V_net (a 105 × 11 matrix; 105 represents the number 
of ASD subjects, and 11 represents the number of net-
works) was calculated from the network level (including 
10 functional networks and an uncertain network). A 
k-means clustering analysis was performed after regress-
ing out the covariates (age, FIQ, mean FD, handedness, 
eye status, and sites) from the V_net matrix. For the opti-
mal k value of clustering, it is determined by the mean 
silhouette value; that is, the silhouette of each point after 
clustering is calculated and the mean silhouette is cal-
culated. The larger the mean silhouette is, the better the 
clustering effect is. The k-means clustering was repeated 
19 times using k ranging from 2 to 20, and the mean sil-
houette value was calculated for each clustering analysis.

To determine whether clustering results were influ-
enced by participant demographic characteristics, clini-
cal symptom severity of ASD, and data sites, two-sample 

Vik = E 1−
FikF

′

jk

(FikF
′

ik)(FjkF
′

jk)
, j = 1, 2, . . .n

Table 1 Demographics of the participants

ASD Autism spectrum disorder, TC Typical controls, FIQ Full-scale intelligence 
quotient, FD Frame-wise displacement, ADOS Autism Diagnostic Observation 
Schedule (available for 82 ASD subjects), ADOS_COMM Communication 
subscore of the ADOS, ADOS_SOCIAL Social subscore of the ADOS, ADOS_RRB 
Stereotyped behaviors and restricted interests subscore of the ADOS
a Two-sample t tests were used to compare age, FIQ, and mean FD parameters 
between the two groups
b χ2 tests were used to compare eye status and handedness

ASD (n = 105) TC (n = 102) p value

Age (years) 10.15 ± 1.26 10.02 ± 1.38 0.48a

FIQ 110.53 ± 17.42 113.78 ± 11.92 0.12a

Mean FD (mm) 0.17 ± 0.08 0.16 ± 0.08 0.16a

Eye status (open/closed) 91/14 88/14 0.93b

Handedness (right/left/mixed) 83/9/13 82/5/15 0.54b

ADOS_COMM 3.13 ± 1.59 – –

ADOS_SOCIAL 8.01 ± 2.51 – –

ADOS_RRB 2.23 ± 1.63 – –
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t tests were used to analyze whether there were signifi-
cant differences in age, FIQ, mean FD, and ADOS scores 
between subtypes of ASD, χ2 tests were used to analyze 
whether there were significant differences in handed-
ness and eye status between subtypes of ASD, and the 
distribution of sites was also examined for each subtype 
of ASD. To exclude the effect of potential heterogeneity 
among TC on the results, we randomly grouped indi-
viduals in the TC group to obtain two well-matched sub-
groups of TC (51 subjects in subgroup 1 and 51 subjects 
in subgroup 2). The cluster analysis was then replicated 
using the two TC subgroups to test for the reliability of 
this study (see Additional file 1).

Atypical FC patterns of ASD subtypes
The obtained ASD subtypes and TC were compared for 
FC differences to determine whether there is an atypi-
cal FC pattern in the ASD subtypes. The FC differences 
between each ASD subtype group and TC group and 
between subtype groups were analyzed at three lev-
els: region, network, and whole-brain. The FC matrix 
for each group was obtained by Fisher z-transforma-
tion of the Pearson’s correlation matrix for all subjects, 

and two-sample t tests were then performed to analyze 
the FC differences. Region and network-level results 
were false discovery rate (FDR) corrected, and statisti-
cal significance was set at p < 0.05. Results at the whole-
brain level were corrected for Bonferroni (q < 0.05, 
p = 0.05/3 = 0.017). Age, FIQ, mean FD, handedness, eye 
status, and sites were used as covariates. At the network 
level, we examined the t-values of the two-sample t tests 
in the FC analysis of differences. And we calculated the 
percentage of connectivity edges with significant FC dif-
ferences in ROI between networks to the total connectiv-
ity edges between networks based on the results of the 
FC difference analysis at the region level. These analyses 
were used to determine which networks had anomalies. 
The same methods were also used to analyze whether 
there were differences in FC between the whole ASD and 
TC groups at the region, network, and whole-brain levels.

Relationship between IDFC of ASD subtypes and severity 
of clinical symptoms of ASD
For each ASD subtype, the relationship between the 
network-level IDFC (regressing out age, FIQ, mean FD, 
handedness, eye status, and sites as covariates), used to 

Fig. 1 Flowchart of the inter-individual deviation of functional connectivity (IDFC) analysis. A Flowchart of IDFC matrix calculation. The IDFC 
matrix between the autism spectrum disorder (ASD) group and the typical controls (TC) group can be calculated from the functional connectivity 
(FC) network. d: the cosine distance between Fik and Fjk; V_roi: IDFC matrix at the region level; and V_net: IDFC matrix at the network level. B ASD 
subtypes were obtained by a k-means clustering analysis at the network level by using the IDFC at the network level as features. C A multivariate 
support vector regression model was used to analyze the relationship between network-level IDFC and severity of clinical symptoms of ASD. D 
The within-group inter-individual FC deviation of the ASD and TC groups was calculated and compared. Vaa_roi: the matrix of inter-individual FC 
deviation within the ASD group at the region level; Vtt_roi: the matrix of inter-individual FC deviation within the TC group at the region level
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represent the degree of heterogeneity between individu-
als with ASD and TC, and the severity of ASD symptoms 
as assessed by ADOS subscores (i.e., communication, 
social, restricted and repetitive behaviors) was explored 
[36]. Only the 82 ASD subjects with complete ADOS 
subscale score information were used for the follow-
up analysis. A multivariate support vector regression 
method was applied for the analysis, where the ADOS 
subscores were used as dependent variables and the 
IDFC of each network was used as the independent vari-
able [37]. Library for Large Linear Classification (LIB-
LINEAR) (https:// www. csie. ntu. edu. tw/ ~cjlin/ libli near/) 
toolbox was used in this analysis [38]. The regression 
analysis was performed using the L2-regularized support 
vector regression model. The performance of the regres-
sion algorithm was evaluated using leave-one-out cross-
validation (LOOCV) [39]. Briefly, a model is constructed 
based on n-1 subjects and then a prediction is made for 
the remaining subject. After all subjects were predicted 
by the model, the correlation coefficient R between the 
predicted and observed values was calculated. Statistical 
significance was determined by a non-parametric permu-
tation test [40], by disordering the labels to obtain a new 
correlation coefficient Rp based on the disordered data-
set. The p value is determined by the ratio of the number 
of times the Rp-value is greater than the R-value in 1000 
permutations to the total number of permutations (i.e., 
1000). To reflect the contribution of each network, we 
average the feature weights of each LOOCV as the fea-
ture weights of each network.

Inter‑individual FC deviation within the group
The FC heterogeneity within the group was also com-
pared between ASD and TC groups. An algorithm simi-
lar to IDFC was used to represent the inter-individual FC 
deviation within the group. At the brain region level, the 
inter-individual FC deviation matrix Vaa_roi for the ASD 
group can be obtained by using the FC of the ASD group 
as Fik and Fjk in the IDFC calculation equation (i ≠ j). 
Similarly, the inter-individual FC deviation matrix Vtt_roi 
for the TC group can be calculated. Two-sample t tests 
were performed on Vaa_roi and Vtt_roi to explore the 
patterns of differences. Age, FIQ, mean FD, handedness, 
eye status, and sites were used as covariates. The results 
were FDR corrected, and the statistical significance was 
set at p < 0.05.

Results
Subtyping ASD based on IDFC
The optimal value of k for the k-means clustering was 
determined as 2, since it can be seen from Fig. 2A that the 
maximum value of the mean silhouette is 0.61 at k = 2. 
The 105 ASDs were classified into two ASD subtypes (47 

subjects in subtype 1 and 58 subjects in subtype 2) by 
k-means clustering based on IDFC at the network level, 
as shown in Fig. 2B. The IDFC patterns of the two ASD 
subtypes at the network level and at the brain region level 
are shown in Fig. 2C, D, and the IDFC patterns are also 
presented in table form as detailed in Additional file  1: 
Tables S1 and S2.

No significant differences were found between ASD 
subtype 1 and ASD subtype 2 in terms of demographics, 
including: age, FIQ, handedness, eye status, and mean 
FD. And no significant differences were found between 
the two ASD subtype groups in terms of clinical symp-
tom severity by comparing ADOS scores either. Consid-
ering that we used multicenter data of subjects, we also 
examined the data center distribution of both ASD sub-
types (Additional file 1: Fig. S1; see Additional file 1 for 
details).

Atypical FC patterns of ASD subtypes
FC comparison analysis at the region, network, and 
whole-brain levels was performed for subtype 1, subtype 
2, and TC groups, using two-sample t tests, as shown in 
Fig.  3. Of the 34,716 possible connectivity edges at the 
region level, the aberrant FC pattern was found to be 
significantly lower for the subtype 1 group than for the 
TC group on 37% of the edges (i.e., 12,700 edges), sig-
nificantly higher for the subtype 2 group than for the 
TC group on 16% of the edges (i.e., 5623 edges), and 
significantly higher for the subtype 2 group than for the 
subtype 1 group on 90% of the edges (i.e., 31,388 edges) 
(p < 0.05, FDR corrected) (Fig. 3A). In the comparison of 
the whole ASD and TC groups, no significantly different 
connectivity edges were found, as detailed in Additional 
file 1: Fig. S2.

Significant differences were also found in the network-
level FC analysis (including intra-network connectivity 
and inter-network connectivity). The subtype 1 group 
showed a significant decrease in FC on all 66 connec-
tivity edges compared to the TC group, the subtype 2 
group showed a significant increase in FC on 64 con-
nectivity edges compared to the TC group, and the sub-
type 2 group showed a significant increase in FC on all 
66 connectivity edges compared to the subtype 1 group 
(p < 0.05, FDR corrected) (Fig. 3B). Analysis of the t-val-
ues of the two-sample t tests for network-level FC differ-
ence analysis revealed that the absolute value of t-values 
was larger between ASD subtype 1 and TC in SMN-FPN, 
SMN-SUB, and VAN-VAN, and between ASD subtype 
2 and TC in SUB-DMN, SUB-VN, SUB-FPN, and SUB-
DAN, as detailed in Additional file  1: Fig. S4A. The 
analysis of the percentage of connectivity edges with sig-
nificant FC differences in ROI between networks showed 
that the percentage of connectivity edges with significant 

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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FC differences in ROI between ASD subtype 1 and TC 
was larger at SMN-FPN, SMN-SUB, CO-DAN, AN-FPN, 
AN-SUB, and VAN-VAN, and the percentage of con-
nectivity edges with significant FC differences in ROI 
between ASD subtype 2 and TC was larger at SUB-DMN, 

SUB-VN, SUB-FPN, and SUB-DAN, as detailed in Addi-
tional file  1: Fig. S4B. In the comparison of the whole 
ASD and TC groups, no significantly different network 
connectivity edges were found, as detailed in Additional 
file 1: Fig. S5.

Fig. 2 ASD subtype analysis based on the network-level IDFC. A Mean silhouette plots, indicating that the optimal number of clusters is 2. B The 
results of k-means clustering shown on the 2-dimensional plane. C Mean IDFC patterns at the network level of two ASD subtypes. Red inner ring 
represents ASD subjects belonging to subtype 1, and blue inner ring represents ASD subjects belonging to subtype 2. The outer circle indicates the 
network corresponding to the mean IDFC. D Mean IDFC patterns at the region level of two ASD subtypes. The two inner rings represent the mean 
IDFC of ROIs, and the outer ring indicates the network corresponding to ROIs. Red inner ring represents ASD subjects belonging to subtype 1, and 
blue inner ring represents ASD subjects belonging to subtype 2. IDFC, inter-individual deviation of functional connectivity; ASD, autism spectrum 
disorder; ROI, region of interest; SMN, somatosensory network; CO, cingulo-opercular network; AN, auditory network; DMN, default-mode network; 
VN, visual network; FPN, fronto-parietal network; SAN, salience network; SUB, subcortical network; VAN, ventral attention network; DAN, dorsal 
attention network; and UND, uncertain network
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Finally, the FC at the whole-brain level was analyzed 
and the subtype 1 group showed a significant decrease 
in FC compared to the TC group, the subtype 2 group 
showed a significant increase in FC compared to the 
TC group, and the subtype 2 group showed a significant 
increase in FC compared to the subtype 1 group (p < 0.05, 
Bonferroni corrected) (Fig.  3C). In contrast, no signifi-
cant differences were found comparing the whole ASD 
group with the TC group, as detailed in Additional file 1: 
Fig. S6.

Relationship between IDFC of ASD subtypes and severity 
of ASD clinical symptoms
For each ASD subtype, the multivariate support vector 
regression model was used to investigate the relationship 
between IDFC and ASD symptom severity. Model perfor-
mance was further assessed using LOOCV, and statistical 
significance was determined by a non-parametric per-
mutation test. The network-level IDFC of ASD subtype 1 
predicted the ADOS communication subscore (r = 0.38, 
p = 0.004; Fig.  4A), and no significant relationship was 
observed with other subscores of ADOS. The network-
level IDFC of ASD subtype 2 predicted the ADOS ste-
reotypic behavior subscore (r = 0.48, p = 0.002; Fig.  4B), 
and no significant relationship was observed with other 
subscores of ADOS. The feature weight analysis resulted 
in ASD subtype 1 exhibiting higher weights for VN, VAN, 
and DAN and lower weights for DMN, FPN, and SUB, 
and ASD subtype 2 exhibiting higher weights for SMN, 
VN, and DAN and lower weights for CO and SUB, as 
shown in Additional file 1: Fig. S7.

Within‑group inter‑individual FC deviation differences 
between the ASD and TC groups
The differences in within-group inter-individual FC 
deviation between the ASD and TC groups were ana-
lyzed from the ROI level using two-sample t tests. Com-
pared with the TC group, the ASD group showed higher 
within-group inter-individual FC deviation at 20 ROIs 
and lower at 5 ROIs (p < 0.05, FDR corrected), as shown 
in Fig. 5. Among them, the 20 ROIs with higher within-
group inter-individual FC deviation include: one in SMN, 
five in DMN, eight in VN, one in FPN, two in SAN, 
one in SUB, and two in UND. The 5 ROIs with lower 

within-group inter-individual FC deviation included one 
in SMN, two in DMN, one in VAN, and one in UND. This 
result is also presented in table form as detailed in Addi-
tional file 1: Table S3.

Discussion
In this study, IDFC constructed based on FC networks 
was used to analyze the heterogeneity of functional brain 
deviations in children with ASD. Two ASD subtypes 
were obtained by IDFC-based ASD clustering analysis, 
and aberrant FC patterns of ASD subtypes were identi-
fied. The IDFC of ASD subtypes was found to predict the 
severity of different ASD symptoms separately by a mul-
tivariate support vector regression model. By compar-
ing the within-group inter-individual FC deviation of the 
ASD group with that of the TC group, a complex pattern 
of differences in brain functional network heterogeneity 
was found. These results further illustrate the heteroge-
neity of ASD from the perspective of functional brain 
networks and provide a new way to study brain heteroge-
neity in individuals with ASD.

Subtypes of individuals with ASD
ASD can be divided into different subtypes in terms of 
brain structure [29] and brain function [20], as reported 
in previous studies. Subtyping is widely used in many 
aspects of ASD research. While 25–40% of children with 
ASD showed normal brain development in early life and 
were found to have symptoms of ASD after 18 months of 
life, there were also children with ASD who were found 
to have developmental delays within 18  months, and 
this possibly suggests that there were different subtypes 
of ASD at the level of brain development [41]. In a study 
of subtypes of ASD, two subtypes of ASD with differen-
tial FC patterns in different resting-state networks were 
identified, and the two subtypes differed in clinical symp-
tom severity [42]. Another subtype study based on FC 
showed that each ASD subtype had unique behavioral 
brain relationships, suggesting the possibility of clinical 
applications for differentiating ASD subtypes based on 
FC [29]. Consistent with previous studies, we also sup-
port that ASD can be subdivided into subtypes, and the 
present study reveals two ASD subtypes with different 
IDFC patterns, further revealing a heterogeneous pattern 

Fig. 3 Analysis of atypical FC patterns in ASD subtypes. A Results of two-sample t tests for significant differences in FC at the region level for 
subtype 1, subtype 2, and TC (p < 0.05, FDR corrected). B Differences in FC of subtype 1, subtype 2, and TC at the network level. The upper right and 
lower left triangles indicate the average network FC values for the different groups. ± indicates a significant increase or decrease in FC for the group 
in the upper right compared to the group in the lower left (two-sample t tests, p < 0.05, FDR corrected). C Differences in FC of subtype 1, subtype 2, 
and TC at the whole-brain level. *represents significant differences (two-sample t tests, p < 0.05, Bonferroni corrected). FC, Functional connectivity; 
ASD, autism spectrum disorder; FDR, false discovery rate; TC, typical controls; SMN, somatosensory network; CO, cingulo-opercular network; AN, 
auditory network; DMN, default-mode network; VN, visual network; FPN, fronto-parietal network; SAN, salience network; SUB, subcortical network; 
VAN, ventral attention network; DAN, dorsal attention network; and UND, uncertain network

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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of functional brain networks in ASD from the perspec-
tive of inter-individual deviation.

Although heterogeneity in ASD has been explained by 
subtypes from different perspectives in previous stud-
ies, studies have also attributed heterogeneity in ASD to 
factors such as age [43–45], intelligence [46], and gen-
der [47]. To exclude the effects of these factors, only 
male subjects were used in this study and age and FIQ 
were regressed out prior to subtype identification, and 
two highly heterogeneous ASD subtypes were finally 
obtained. That is, the difference in IDFC between the two 
ASD subtypes was not influenced by age, intelligence, 
and gender. This means that the results of the present 
study are not due to these factors, but more likely to the 
inherent heterogeneity of the functional network of the 
ASD brain, which reinforces the need for subtyping in 
the future studies of ASD.

Atypical FC pattern of ASD subtypes
Recent ASD subtype studies reported that different ASD 
subtypes have different atypical FC patterns [29, 48], and 
we found similar results for ASD subtype studies based 
on IDFC. We obtained ASD subtype 1 exhibiting a lower 
functional connectivity pattern, especially among SMN-
FPN, SMN-SUB, and VAN-VAN networks, and ASD 
subtype 2 exhibiting a higher functional connectivity pat-
tern, especially among SUB-DMN, SUB-VN, SUB-FPN, 
and SUB-DAN networks, which is similar to the previ-
ous findings. Previous studies on ASD brain function 
reported anomalous FC patterns between SUB network 
and other networks [49], and anomalous FC between 
SMN and FPN network was also reported [20]. The IDFC 

of the two ASD subtypes predicted different ASD symp-
tom severities possibly attributed to the different atypical 
FC patterns of the two subtypes, which further illustrates 
the important role of the two ASD subtypes obtained in 
this study.

In this study, a subtyping approach was used to study 
FC abnormality patterns, and IDFC was used as a subtyp-
ing feature to emphasize the influence of brain hetero-
geneity on ASD more than traditional features. The two 
ASD subtype groups exhibited hypoconnectivity pattern 
and hyperconnectivity pattern relative to the TC group, 
and in line with our conjecture, no significant differences 
were found when comparing the FC of the whole ASD 
group with that of the TC group. Previous studies have 
identified complex patterns of FC in resting-state func-
tional brain network studies in ASD, and inconsistent 
results are common [15]. Studying the entire ASD group 
led to some potential atypical FC patterns being over-
looked or misinterpreted, which is an important reason 
why the results of previous studies are often inconsistent.

Relationships between IDFC and severity of ASD clinical 
symptoms
Previous studies have generally reported that abnor-
mal functional networks potentially related to clinical 
symptoms in individuals with ASD [23, 50]. Clinical 
correlation analysis based on ASD subtypes to obtain 
a better prediction of ADOS scores has also been 
reported [19], which suggests a link between the het-
erogeneity of brain networks in individuals with ASD 
and the heterogeneity of their clinical symptom sever-
ity. This view is also supported by our study, in which 

Fig. 4 Relationships between ADOS subscores and predicted scores using network-level IDFC. A The relationship between ADOS communication 
subscore and predicted scores for ASD subtype 1. B The relationship between ADOS stereotypic behavior subscore and predicted scores for ASD 
subtype 2. ADOS, Autism Diagnostic Observation Schedule; IDFC, inter-individual deviation of functional connectivity; and ASD, autism spectrum 
disorder
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both ASD subtypes of IDFC were correlated with ASD 
symptoms but did not behave in the same way, with 
subtype 1 showing a potential association with the 
severity of social communication impairments in ASD 
and subtype 2 showing a relationship with ASD symp-
toms in terms of severity of restricted and repetitive 
behaviors. Previous studies also found different poten-
tial relationships between different ASD subtypes and 
ASD symptoms. A previous study classified ASD into 
three subtypes: Asperger’s, Pervasive Developmen-
tal Disorder-Not otherwise Specified, and Autism, 
and each subtype-specific brain pattern is correlated 
with different ADOS subdomains [51]. The correla-
tion of one ASD subtype with core ASD symptoms was 
reported in a subtype study of ASD by resting-state 
FC and was not found in other subtypes [52]. ASD 

subtyping studies hold promise as a way to reflect the 
clinical heterogeneity of ASD.

The two ASD subtypes showed different network fea-
ture weights in the brain–behavioral analysis, indicating 
that the contribution of different functional networks 
to the prediction of symptoms differed between the two 
subtypes, and this difference could potentially account 
for the difference between the relationships between the 
two subtypes and ASD symptoms; this difference in rela-
tionship could also be attributed to the hypoconnectivity 
and hyperconnectivity patterns of the two subtypes. Our 
study on the potential relationship between deviant fea-
tures of brain networks and clinical symptoms may pro-
vide a promising way to explain the high heterogeneity of 
clinical symptoms of ASD and boost the development of 
clinical diagnostic markers.

Fig. 5 Results of two-sample t tests for within-group inter-individual FC deviation at the region level of ASD and TC groups. The brain map shows 
the location of the ROIs (with significant differences between ASD and TC). The outer circle indicates the network where the ROIs are located. The 
inner circle indicates the t-value of the two-sample t tests (p < 0.05, FDR corrected). FC, Functional connectivity; ASD, autism spectrum disorder; TC: 
typical controls; ROI, region of interest; FDR, false discovery rate; SMN, somatosensory network; DMN, default-mode network; VN, visual network; 
FPN, fronto-parietal network; SAN, salience network; SUB, subcortical network; VAN, ventral attention network; and UND, uncertain network
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Inter‑individual FC deviation within the group differences 
between the ASD and TC groups
Brain heterogeneity in ASD is different from that in TC 
in the present study. The ASD group showed higher 
inter-individual FC deviation within the group at 20 ROIs 
and lower levels at 5 ROIs, i.e., greater individual dif-
ferences in FC at more ROIs. The results of the restudy 
using two TC subgroups also found greater individual 
differences in FC at more ROIs for ASD compared to the 
TC subgroups. This suggests broader inter-individual 
variation among ASD compared to TC, consistent with 
previous findings on individuals brain heterogeneity in 
ASD [16, 21, 29]. Moreover, significantly different ROIs 
were located in multiple networks (including 7 functional 
networks and an uncertain network), and significantly 
different ROIs were also found to be located in multiple 
networks in a complementary analysis using two TC sub-
groups, which further corroborates the high complexity 
of ASD and the need to study it on a large scale [53, 54].

Limitations
First, due to the relatively limited number of female par-
ticipants in the ABIDE database, only male children were 
selected, which prevented analysis of the effects of gen-
der. Because gender is a factor that influences ASD het-
erogeneity [55], there is a need to focus on collecting 
data on female individuals with ASD in future studies to 
be able to explore gender heterogeneity in ASD. Second, 
previous studies have generally concluded that ASD is 
a developmental disorder [56, 57] and the heterogene-
ity of functional brain networks of individuals with ASD 
at other developmental stages, such as adolescence and 
adulthood, remains unknown. In order to figure out the 
development of heterogeneity of functional brain net-
works in ASD, longitudinal data including subjects at 
different developmental stages are needed for future lon-
gitudinal studies. Third, recent studies have shown that 
resting-state FC is a dynamic process [31, 58, 59], and it 
is necessary to develop dynamic subtyping methods in 
the future, which may better reveal ASD heterogeneity. 
Finally, the present study was a unimodal study based 
on inter-individual heterogeneity of functional brain 
networks and the influence of structural brain networks 
needs to be considered in future studies. A multimodal 
study that introduces structural brain networks could 
provide a more comprehensive analysis of heterogeneity 
in ASD.

Conclusion
This study focused on the heterogeneity among individu-
als with ASD based on functional brain networks devia-
tions of ASD from TC, revealing two ASD subtypes with 

distinct FC patterns at multiple spatial scales. Further-
more, IDFC of ASD subtypes was found to predict the 
severity of different ASD symptoms. These results reveal 
individual heterogeneity of functional brain networks in 
ASD and highlight the important role of individual het-
erogeneity in explaining the complex brain patterns of 
ASD.
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