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Abstract
Background  Categorization and its influence on perceptual discrimination are essential processes to organize 
information efficiently. Individuals with Autism Spectrum Condition (ASC) are suggested to display enhanced 
discrimination on the one hand, but also to experience difficulties with generalization and ignoring irrelevant 
differences on the other, which underlie categorization. Studies on categorization and discrimination in ASC have 
mainly focused on one process at a time, however, and typically only used either behavioral or neural measures 
in isolation. Here, we aim to investigate the interrelationships between these perceptual processes using novel 
stimuli sampled from a well-controlled artificial stimulus space. In addition, we complement standard behavioral 
psychophysical tasks with frequency-tagging EEG (FT-EEG) to obtain a direct, non-task related neural index of 
discrimination and categorization.

Methods  The study was completed by 38 adults with ASC and 38 matched neurotypical (NT) individuals. First, we 
assessed baseline discrimination sensitivity by administering FT-EEG measures and a complementary behavioral task. 
Second, participants were trained to categorize the stimuli into two groups. Finally, participants again completed the 
neural and behavioral discrimination sensitivity measures.

Results  Before training, NT participants immediately revealed a categorical tuning of discrimination, unlike ASC 
participants who showed largely similar discrimination sensitivity across the stimuli. During training, both autistic 
and non-autistic participants were able to categorize the stimuli into two groups. However, in the initial training 
phase, ASC participants were less accurate and showed more variability, as compared to their non-autistic peers. 
After training, ASC participants showed significantly enhanced neural and behavioral discrimination sensitivity across 
the category boundary. Behavioral indices of a reduced categorical processing and perception were related to the 
presence of more severe autistic traits. Bayesian analyses confirmed overall results.

Limitations  Data-collection occurred during the COVID-19 pandemic.

Conclusions  Our behavioral and neural findings indicate that adults with and without ASC are able to categorize 
highly similar stimuli. However, while categorical tuning of discrimination sensitivity was spontaneously present in 
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Background
Autism Spectrum Condition (ASC) is a neurodevelop-
mental disorder characterized by difficulties in social 
interaction and communication, and by the presence of 
restricted, repetitive patterns of behavior, interests or 
activities [1, 2]. In the latest version of the Diagnostic and 
Statistical manual of Mental disorders (DSM-5) atypical 
sensory processing was added as a diagnostic criterion 
[2]. This was in line with scientific evidence, which has 
expanded to atypical sensory processing as a key area in 
ASC [3]. This shift has stimulated new interest in percep-
tual processes in ASC, such as perceptual discrimination 
and categorization [4].

Atypical sensory processing (such as sensory sensitivity) 
has a huge impact on the daily life of individuals with ASC
For instance, this results in the tendency of autistic indi-
viduals to avoid noisy environments. On the other hand, 
their sensitivity may also contribute to sensory seek-
ing behaviors [5]. These experiences in daily life map 
well on the proposition that individuals with ASC show 
enhanced low-level perceptual processing [6]. Indeed, 
evidence implies that discrimination is enhanced in 
individuals with ASC [4, 7]. Perceptual discrimination is 
essential to perceive differences and differentiate between 
different exemplars and situations, but also requires 
balance with their counterpart categorization. When 
categorizing, on the other hand, irrelevant differences 
between stimuli need to be ignored to be able to group 
them together as a perceptual or cognitive category. Cat-
egorization allows one to respond quickly and adaptively 
to new exemplars of a known category, by treating these 
new exemplars as somehow equivalent [8]. This process 
is crucial to interact appropriately with the world, in 
order to avoid being overwhelmed by its complexity and 
variability. The balance between perceptual discrimina-
tion and categorization requires some level of abstrac-
tion, (i.e., to extract the relevant similarities in spite of 
minor or irrelevant differences), but one still needs to 
be able to discriminate between different exemplars of 
a known category (e.g., different faces). A well-docu-
mented interaction between categorization and discrimi-
nation is categorical perception, which is reflected in 
reduced discrimination sensitivity for exemplars within 
a category and enhanced discrimination (“discrimination 
peak”) for exemplars across the category boundary [9]. 
Evidence suggests that individuals with ASC experience 

difficulties in categorization [4, 10]. In their recent meta-
analysis, Wimmer and colleagues provided evidence for 
reduced category learning skills in ASC [10]. In addition, 
Mercado and colleagues discussed how atypical percep-
tual category learning in ASC can affect their cognitive 
development and social functioning [11].

Difficulties in categorization and an enhanced perceptual 
discrimination in ASC may be in line with different 
hypotheses concerning learning in autism
For example, hypothesized differences in learning style 
postulate that autistic individuals’ prefer look-up table 
(LUT) learning, which aims at storing exemplars or expe-
riences precisely, instead of interpolation (INT) learning, 
which focuses on extracting the underlying regularities 
from experiences [12]. At a neurocognitive level, these 
perceptual and learning processes can also be linked to 
the predictive coding [13]. According to this account, 
the brain is a prediction machine that attempts to match 
incoming sensory input with top-down expectations 
or predictions. Depending on the situation, a mismatch 
(i.e., prediction error) can either be relevant and should 
be taken into account to update expectations or should 
be ignored [14]. Van de Cruys and colleagues argued in 
their HIPPEA account (i.e., high and inflexible precision 
of prediction errors in autism) that updating of the inter-
nal models cannot be flexibly adjusted to the complexity 
of the environment in individuals with ASC, which gives 
rise to overfitting of sensory input, resulting in overspe-
cific categories and reduced generalization, and conse-
quently an overwhelming information overload in ASC 
[15].

Studies investigating these perceptual processes in ASC 
are rather limited and conflicting
Previous research focused mostly on the hypothesis that 
individuals with ASC are not able to categorize stimuli 
using prototypes (i.e., the most typical exemplars that 
exhibit the essential features of a category) [17–20]. The 
results of this research have been conflicting by not tak-
ing into account confounding factors (i.e., differences in 
participant characteristics, experimental paradigm, given 
instructions, how participants were trained, application 
of feedback, etc.), by disregarding heterogeneity within 
group and by using experimental approaches and stimuli 
that are not always suitable to study prototype formation 
[16, 21]. In addition, autistic individuals would be slower 

the NT group, it only emerged in the autistic group after explicit categorization training. Additionally, during training, 
adults with autism were slower at category learning. Finally, this multi-level approach sheds light on the mechanisms 
underlying sensory and information processing issues in ASC.
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in learning categories [22], display no typical “discrimi-
nation peak” (i.e., no higher discrimination sensitivity 
across the category compared to within the category; 
[23]), have difficulties categorizing atypical exemplars 
[24, 28], are less inclined to use an interpolation learn-
ing style (i.e., INT: extracting regularities; [12, 25]), have 
reduced generalization of category learning [26, 27], or 
would have difficulties with multi-dimensional catego-
rization (i.e., when stimuli differ on two or more dimen-
sions; [29, 30]). Thus far, almost no study has investigated 
the interplay between perceptual discrimination and cat-
egory learning, to address sensory and information pro-
cessing issues in ASC and the underlying mechanisms in 
a coherent way [18, 24, 31]. Furthermore, most studies 
investigating perceptual discrimination and categoriza-
tion in individuals with and without ASC were limited to 
behavior. A particular disadvantage of the exclusive use 
of behavioral tests is that responses are not controlled for 
various cognitive processes and biases, such as decisional 
or motivational processes, which could obscure differ-
ences between participants with and without ASC.

Opportunities for innovative direct neural measures
Against this background, a more direct neural index of 
perceptual discrimination and categorization is needed. 
We believe that Frequency-Tagging (FT) scalp elec-
troencephalography (EEG) recording during periodic 
stimulation provides exactly that. The principle of FT-
EEG refers to visual stimulation of the human brain at 
a constant frequency rate (e.g., 6  Hz), which evokes an 
EEG response on the scalp exactly at that frequency (i.e., 
steady-state visual evoked potential or SSVEP) [32]. The 
application of the FT-EEG in an oddball paradigm, that 
is, the detection of periodically introduced oddball (O) 
images in a series of base (B) images (e.g., B, B, B, B, O, 
B) by an EEG response at the oddball frequency (e.g., 
1.2  Hz), makes it an objective and direct measure for 
change detection [33]. The FT-EEG approach has many 
advantages: (1) the response can be measured automati-
cally (i.e., spontaneously, without an explicit behavioral 
task)1 and objectively (since it occurs at a predefined fre-
quency); (2)  the response can be quantified directly by 
comparing the response at the induced frequency (sig-
nal) with responses at neighboring frequencies (noise); 
(3) the technique is extremely robust, since it yields high 
signal-to-noise ratio (SNR) responses; and (4)  the tech-
nique provides these robust results in a few minutes only. 
FT-EEG paradigms have been validated in the context of 
low-level and mid-level visual processing (e.g., contrast 
sensitivity and figure-ground segregation) [32] as well 

1  To ensure that participants stay focused on the screen during this passive 
viewing, they will perform an orthogonal color change detection task (i.e., a 
task unrelated to the measure of interest in which participants typically have 
to detect color changes of the fixation cross during FT-EEG presentation).

as higher level face processing (e.g., face discrimination) 
[33, 34]. In a recent paper with NT participants, we also 
showed that FT-EEG can provide a direct neural index of 
perceptual discrimination and categorization [35].

The present study
The ability to categorize is an essential cognitive function 
which may be impaired in ASC. As argued earlier, this 
difficulty relates to differences in perceptual discrimina-
tion. It is probably due to differences in learning style, 
and more specifically differences in error correction. 
However, earlier research on perceptual discrimination 
and categorization mostly happened in isolation, using 
rather few trials and naturalistic stimuli, with poorly con-
trolled dimensions or features [11]. The present study 
aims to provide an in-depth understanding by investigat-
ing the processes of discrimination and categorization 
concurrently. By using a systematic approach, combining 
solid psychophysical paradigms and a carefully controlled 
stimulus set with FT-EEG measures, we will circumvent 
the problems of earlier research and attempt to draw 
clearer conclusions.

In particular, Soulières and colleagues argued that indi-
viduals with ASC are able to categorize, but are slower in 
learning this process [22]. In another study, they found 
that individuals with ASC do not show the typical behav-
ioral “discrimination peak” of categorical perception [23]. 
However, their findings are not unequivocal, as their 
stimuli (i.e., ellipses) may not have induced a categorical 
percept since their experiment did not involve a distinct 
pre- and post-categorization training measurement. To 
overcome these ambiguities, we will investigate poten-
tial shifts in discrimination sensitivity (across the to-be 
trained category boundary compared to within the cate-
gory) before and after explicit categorization training (via 
feedback) in neurotypical (NT) and ASC participants on 
two highly-controlled orthogonal stimulus dimensions 
(counterbalanced across participants). Using two orthog-
onal dimensions enables us to draw general conclusions 
about the induced categorization training effects, which 
are not stimulus specific. Moreover, training occurred on 
different exemplars from the original dimension, forcing 
the induction of an interpolation learning-style (not an 
exemplar-based LUT style). Finally, in this study, we will 
combine direct FT-EEG measures, together with stan-
dard psychophysical behavioral tasks, to get a more com-
plete impression of discrimination sensitivity before and 
after category learning.

Methods
Participants
Seventy-six participants (38 with and 38 without an 
ASC diagnosis) took part in the study. Participants were 
normally gifted adults (18–55 year age range, IQ > 75) 
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with corrected-to-normal vision, without neuroleptics 
prescription and without prior knowledge about the 
experiment. Participants were recruited through public 
advertisement and the Leuven Autism Expertise Center. 
Participants with ASC were well-phenotyped and diag-
nosed by a multidisciplinary team following DSM-IV or 
DSM-5 criteria. NT and ASC participants were matched 
on gender, age, laterality, and IQ (Table 1). For NT partic-
ipants, additional exclusion criteria were being diagnosed 
with a psychiatric or neurological disorder, and an Autis-
tic-spectrum Quotient (AQ) above the clinical cut-off 
of 32. In the ASC group, fourteen participants reported 
having one or several comorbidities (attention-deficit 
(hyperactivity) disorder: 5, dyslexia, dyscalculia and/or 
dyspraxia: 3, combination of attention-deficit hyperac-
tivity disorder and dyslexia/depression: 2, depression: 1, 
obsessive-compulsive disorder: 1, Gilles de la Tourette: 1, 
epilepsy: 1).

A short version of the Wechsler Adult Intelligence 
Scale IV-NL (WAIS-IV-NL) was used to estimate IQ of 
the participants. The four subtests included two tests for 
verbal comprehension (similarities of words and vocabu-
lary) and two for perceptual reasoning (block design test 
and visual puzzles). In addition, participants also had to 
complete an online web survey (via a platform of the KU 
Leuven) asking about demographics and several person-
ality characteristics related to ASC. The following ques-
tionnaires were included: Autism Spectrum Quotient 
(AQ) and the Glasgow Sensory Sensitivity Scale (GSQ). 
The AQ is used to assess autistic traits [36, 37]. The GSQ 
is a 42-item questionnaire assessing atypical sensory 
sensitivity across seven modalities (i.e., visual, auditory, 
olfactory, gustatory, tactile, vestibular and propriocep-
tive [38, 39]). The GSQ gives a total score of atypical sen-
sory sensitivity (maximum score of 168), as well as the 

separate sub-scores of hypersensitivity and hyposensitiv-
ity (with both a maximum score of 84).

The study was approved by the Ethical Committee of 
the University Hospital of Leuven. Participants provided 
written informed consent before the start of the experi-
ment and received a monetary compensation afterwards. 
Participants were instructed to be well-rested to opti-
mize the conditions of the study. The participants were 
informed about the appearance of flickering images, the 
duration of the experiments and the breaks. They were 
asked to complete their task as well as possible and to 
stay attentive. During the EEG measurements they were 
instructed to move as little as possible, to minimize their 
muscle contraction.

Apparatus and data acquisition
The study was performed in a quiet room where light and 
environmental sounds were reduced. The experiments 
were programmed in Psychopy2 [40]. Stimuli were pre-
sented on a gray background of a 27-inch LCD monitor 
with a screen resolution of 2560 × 1440 pixels, and 60 Hz 
refresh rate. Participants were positioned at a distance of 
80 cm using a chin rest.

EEG was recorded using a BioSemi Active-Two ampli-
fier system with 64 Ag/AgCl electrodes. During record-
ing, the system used two additional electrodes for 
reference and ground (CMS, common mode sense, and 
DRL, driven right leg). Horizontal and vertical eye move-
ments were recorded using four electrodes placed at the 
outer canthi of the eyes and above and below the right 
orbit. The EEG was sampled at 512  Hz and electrode 
impedances were kept above -30 µV and under 30 µV.

General procedure
Participants performed one study session at the Uni-
versity Hospital of Leuven. During the session, we 
investigated categorization training and discrimination 
sensitivity before and after the categorization training 
with psychophysical and FT-EEG neural measures [35]. 
First, as a baseline before categorization training, neural 
measures via FT-EEG sweep were obtained (15’), after 
which participants performed a behavioral discrimina-
tion task (15’). After categorization training (30’), the 
same FT-EEG measures (15’) and the behavioral discrim-
ination task (15’) were applied again. Identical measures 
were administered during the pre- and post-assessment 
(see Fig. 1A).

Participants were trained and assessed on one of two 
orthogonal dimensions (originally from a two-dimen-
sional stimulus space2, see Fig.  1B). Counterbalancing 
the assigned stimulus dimension across participants 

2  The whole two-dimensional stimulus space will be used to assess general-
ization in a follow-up study.

Table 1  Participants’ demographics and questionnaire scores. 
Group means (± standard deviations). Results of t-tests and 
chi-square test: ns: non-significant (p > 0.05). Note that GSQ 
questionnaire scores from one ASC participant were missing

NT group ASC group p
Number of participants 38 38 -
Male / Female number 20/18 21/17 ns (p = 0.77)
Age (years) 29.0 (± 8.1) 32.6 (± 9.3) ns (p = 0.07)
Left / Right-handed 5/33 7/31 ns (p = 0.61)
Intelligence Quotient (FSIQ) 112.4 

(± 13.3)
107.3 (± 16.4) ns (p = 0.14)

  VBI 109.5 
(± 13.4)

107.2 (± 14.6) ns (p = 0.46)

  PRI 109.6 
(± 15.4)

104.8 (± 18.2) ns (p = 0.21)

Autism-spectrum Quotient 11.6 (± 5.5) 30.4 (± 9.0) p < 0.0001
Glasgow Sensory Sensitivity 
Scale

28.7 
(± 15.1)

55.5 (± 26.6) p < 0.0001
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(50%-50%) enables us to draw more general conclusions 
about categorization training effects which are not stim-
ulus specific. Evidently, the assignment of the stimulus 
dimension that had to be trained and assessed was also 
matched between ASC and NT groups, while also con-
trolling for participant characteristics as gender, age, lat-
erality, and IQ (see Supplementary Material Table S1). 
We also examined possible differences elicited by the dif-
ferent stimulus dimensions.

Stimuli
The stimuli used in this study originate from Ons et al. 
[41]. These researchers created a highly controlled arti-
ficial multi-dimensional stimulus space, consisting of 
shapes varying along two dimensions: aspect-ratio (AR; 
i.e., the width-to-height ratio) and curvature (CR; i.e., the 
degree to which a curve deviates from a straight line). In 
our study, we used the algorithms of Ons et al. [41] to 
apply these AR and CR variations to one basic shape for 
each dimension. For the pre- and post-training assess-
ments, we applied the original seven-step continuum 
(with steps of 33% from the dimension midpoint to end-
point, see Fig.  1B). For the training session, we used a 
more fine-grained stimulus space, and applied a 50-step 
stimulus continuum (with steps of 4%). Based on behav-
ioral pilot experiments, one (unfamiliar) basic artificial 
shape was selected, and the orthogonal dimensions (CR 
and AR) were adjusted to equate their respective learning 
difficulty. Stimuli extended 5 × 2 (vertical x horizontal) 
visual degrees.

Pre- and post-training assessment To investigate 
discrimination sensitivity across the assigned stimulus 
dimension, we compared perceptual discrimination of 
stimulus pairs within and between the trained category 
(see Fig. 1B). This assessment happened both before and 
after undergoing the categorization training, and entailed 
both behavioral and neural measures.

Categorization training The training was conducted 
on the assigned dimension (either AR or CR). The cat-
egory boundary was introduced in the middle of the 
stimulus dimension (see Fig. 1B). For training purposes, 
we used training stimuli that differed from the stimuli 
assessed along each dimension (before and after train-
ing). This enabled an interpolation (INT) learning-style 
instead of an exemplar-based (LUT) learning-style, 
because participants were not trained and assessed on 
the same stimuli exemplars [12]. Each dimension was 
cut-up in smaller steps of 4% giving rise to 50 training 
stimuli Afterwards, for analyses (such as fitting), we post-
hoc reduced (i.e., accordingly averaged) the responses to 
a 10-step stimulus continuum (see Statistical data analy-
sis Sect.).

Fig. 1  General procedure, stimuli and FT-EEG paradigm. (a) Participants’ 
neural and behavioral discrimination sensitivity was assessed before and 
after explicit categorization training. (b) Stimuli (used for this assessment) 
consisted out of shapes varying across seven steps along one (i.e., the as-
signed) of two dimensions: aspect-ratio (AR i.e., the width-to-height ratio) 
and curvature (CR i.e., the degree to which a curve deviates from a straight 
line). The category boundary for the assigned dimension was introduced 
at the midpoint of the dimension (i.e., 0%: fourth stimulus) during the 
explicit categorization training. To look at behavioral discrimination sen-
sitivity across the assigned stimulus dimension, we compared perceptual 
discrimination of stimulus pairs within (i.e., pair 1–3 and pair 5–7) and be-
tween the trained category (i.e., pair 3–5). (c) For the neural discrimination 
sensitivity assessment, we used an FT-EEG sweep paradigm, which was 
swept for the oddball stimuli across the assigned stimulus dimension (e.g., 
curvature) while the base stimulus stayed the same (i.e., one of the end-
points, in this example is the 99% curved). To compare neural discrimina-
tion sensitivity along the stimulus dimension, we specifically looked at the 
FT-EEG baseline-subtracted oddball amplitude of stimuli at sweep step 
2 and 6 to assess neural sensitivity within the category and of stimuli at 
sweep step 4 for neural sensitivity across the trained category boundary
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Experimental paradigm
In the study, we investigated categorical training and 
assessed discrimination sensitivity twice, once before and 
once after categorization training (see Fig. 1A). Here, we 
describe one such assessment session and the categoriza-
tion training task.

Neural measures: sweep frequency-tagging oddball EEG 
paradigm
The principle of the FT-EEG oddball paradigm is the 
detection of periodically introduced oddball (O) images 
in a series of base (B) images at the base frequency by an 
EEG response at the oddball frequency (B, B, B, B, O, B), 
which makes it an objective and direct measure for per-
ceptual discrimination (see Fig.  1C). More specifically, 
when oddball stimuli are not perceived as different from 
the base stimuli, the stimulus presentation will only elicit 
responses at the base frequency (6  Hz). When oddball 
stimuli are perceived as different from the base stimuli, 
they will elicit an additional oddball response at 1.2  Hz 
and harmonics (n x 1.2 Hz, see Fig. 1C). The amplitude 
of the oddball response thus gives a neural index of dis-
crimination sensitivity. Using size variations and an 
orthogonal color change detection task, we can control 
for low-level and attentional confounds.

The neural part of the experiment consisted of six 
FT-EEG trials of 70  s (for each assessment), sweeping 
through the stimuli of the assigned dimension (CR or 
AR), with stimuli starting from each of the end-points 
of the stimulus dimension (i.e., in case of CR: progress-
ing from curved to less curved and vice versa, and in case 
of AR: progressing from elongated to compact and vice 
versa). In a sweep oddball paradigm, the base stimulus 
remains fixed throughout the entire trial, while the odd-
ball stimulus systematically progresses along the stimuli 
of the dimension. For instance, at the beginning of the CR 
sweep trial (see Fig.  1C), the base and oddball stimulus 
were identical (i.e., 99% curved), and after every 10 s (or 
12 presentations of the same base-oddball stimuli com-
bination) the oddball stimulus systematically changed 
to the next level (i.e., “66% curved”, “33% curved”, etc.), 
reaching the “-99% less curved” level after 7 steps. Neu-
ral discrimination sensitivity across this same dimen-
sion was also assessed while sweeping from the opposite 
direction (i.e., starting with a base and oddball stimulus 
at -99% (reduced curvature), and systematically changing 
the oddball stimulus towards more curvature).

For each of the 7 oddball levels (sweep steps), the stim-
uli were presented for 10 s leading to a total duration of 
each sweep trial of 70  s with a fade-in and fade-out of 
1.67  s (see Movies ‘CR_Sweep’ and ‘AR_Sweep’). Each 
sweep trial (alternately in the ‘original’ and the reverse 
direction along the dimension) was presented three 
times, both before and after training. This enables us to 

assess neural discrimination sensitivity along the stimu-
lus dimension before and after training by comparing the 
baseline-subtracted oddball amplitude during FT-EEG 
assessment before and after training. We will specifi-
cally compare the baseline-subtracted oddball amplitude 
of the FT-EEG sweep steps 2 and 6 to assess neural dis-
crimination sensitivity for within the category and step 
4 for neural discrimination sensitivity across the trained 
category boundary (see Fig.  1C and EEG data analysis 
Sect. and Statistical data analysis Sect.).

Each sweep trial started with the presentation of a fix-
ation cross (jittered between 2 and 5  s) in the center of 
the screen, after which the base and oddball stimuli were 
presented (in the center of the screen with fixation cross) 
using a sinusoidal contrast modulation at their respec-
tive presentation frequency (6 Hz for the base stimuli and 
1.2 Hz for the oddball stimuli). Relative size variations of 
the presented stimuli at 10% [10% smaller, normal size, 
10% larger size] were randomly implemented with a dif-
ferent size at every consecutive presentation to abol-
ish the impact of low-level (pixel) confounds. To ensure 
attention during passive viewing of the stimuli, partici-
pants were instructed to perform an orthogonal color 
change detection task, with the fixation cross changing 
color 20 times during each trial. After every trial, the par-
ticipant had a short break of 10  s. One longer and self-
paced break was given in the middle of all the FT-EEG 
trials.

Behavioral discrimination task
To assess behavioral discrimination sensitivity along the 
assigned stimulus dimension, participants performed 
a 2-Alternative Forced Choice (2-AFC) same-different 
task. During the task, two stimuli from the dimension 
appeared simultaneously (left and right) on the screen 
and participants had to indicate whether the shape was 
same or different, regardless of the size. Throughout the 
task, participants were presented with 10 stimulus pairs. 
These pairs comprised three “different pairs” (i.e., pair 
1–3 and pair 5–7 to assess sensitivity within the category, 
and pair 3–5 to assess sensitivity across the trained cat-
egory boundary, see Fig. 1B), which were presented with 
each stimulus either on the left or on the right side of 
the screen, thus totaling six “different pairs”. In addition, 
four “same pairs” were presented, in which each stimu-
lus was compared to itself. Each pair was presented 20 
times, giving a total of 200 trials which were organized 
in four blocks of each 50 trials (corresponding to five 
presentations of each pair). The trial order was pseu-
dorandomized to prevent consecutive presentation of 
identical trials. One break was included throughout the 
task. To ensure that participants understood the task, 
they performed 10 practice trials on a similar dimension 
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of another stimulus set (with another shape as basis, see 
Ons et al. [41]).

A trial consisted of a fixation cross for 1 s, a target stim-
ulus pair for 200 ms, and the mask stimuli (i.e., a random 
squared grayscale pattern, independent of the stimulus 
properties) for 200 ms to avoid after-image effects. In 
addition, like the FT-EEG experiment, the relative size of 
the stimuli varied by 10% [10% smaller, normal size, 10% 
larger] with a different size at every consecutive presen-
tation. Participants were instructed to respond as fast 
and as accurately as possible after stimulus presentation 
started (maximum time limit of 10  s). With keys 1 and 
3 on the numerical keypath, counterbalanced across par-
ticipants, participants had to indicate whether the stimuli 
were same or different. No direct feedback on the perfor-
mance was offered, but change in color (e.g., green) of the 
labels indicated a registered response.

Categorization training task
During explicit categorization training, participants 
were requested to assign a training stimulus correctly to 
one of two (arbitrary) categories. No direct instructions 
were offered but participants received explicit feedback 
on every trial to derive the underlying categories. We 
administered three training blocks with increasing diffi-
culty level, i.e., by increasing the number of stimuli near 
the category boundary. In the first block, the 50 training 
stimuli (see Stimuli Sect.) were each shown three times. 
In the second block, the percentage of exemplars shown 
around the category boundary relative to the more typi-
cal category exemplars was 60%-40%. In the third block, 
this balance increased to 80%-20%. In total, participants 
were trained on 450 trials with 150 trials per block (30’). 
In each block, presentation of the stimuli occurred in a 
(pseudo)random order. The order was pseudorandom-
ized to prevent consecutive presentation of identical 
stimuli. A break was included for each participant at 
the end and in the middle of each block (i.e., after 75 tri-
als). During each of these self-paced breaks, participants 
could see their accuracy percentage on the last 75 trials 
to motivate them to reach a high accuracy.

The structure of a trial was identical to the discrimina-
tion task, except that only one stimulus and afterwards 
mask was presented in the center of the screen. With 
keys 1 and 3, counterbalanced across participants, par-
ticipants had to indicate whether the presented stimulus 
belonged to one or the other category. Importantly, par-
ticipants were not offered more specific information, nor 
a category label, and were informed to guess in the first 
trials and use the feedback to derive the underlying cate-
gory rule. Feedback was given immediately after the par-
ticipants’ response, by coloring the fixation cross in red 
or green for 500 ms in case of a wrong or right response, 
respectively. To proceed to the next training block, 

participants were required to reach at least 50% accuracy 
after the first block of the training. Participants who did 
not reach this criterion had to repeat the first block3.

EEG data analysis
Preprocessing
All EEG processing steps were carried out using Letswave 
6 and 7 (http://nocions.webnode.com/letswave) in Mat-
lab R2018a (The Mathworks, Inc.). EEG data was seg-
mented in 76-s segments (2  s before and 4  s after each 
sequence), bandpass filtered (0.1 to 100  Hz) using a 
fourth-order Butterworth filter, and down-sampled to 
256  Hz. For one participant who blinked excessively 
(more than two standard deviations above the sample 
mean, M(± SD) = 0.15 ± 0.16 times/s across all EEG trials), 
blinks were corrected by means of independent compo-
nent analysis (ICA) using the runica algorithm [42] as 
implemented in EEGLAB. For this one participant, the 
component accounting for most of the variance and rep-
resenting vertical eye movements was removed. Next, 
noisy electrodes were linearly interpolated from the three 
spatially nearest electrodes for eleven participants (for 10 
out of 11 one electrode and for one participant two elec-
trodes), outside of the proposed region of interest. All 
data segments were re-referenced to a common average 
reference. Finally, data segments were further cropped to 
contain an integer number of 1.2 Hz cycles (oddball fre-
quency) into the sweep steps of 10 s (12 cycles, 2349 time 
bins in total).

Frequency-domain processing
The resulting segments were averaged for each stimulus 
dimension and each sweep step separately (i.e., separately 
for the 7 steps of the different sweep trials) and trans-
formed into the frequency domain using a fast Fourier 
transform (FFT). The amplitude spectrum was computed 
with a spectral resolution of 0.1 Hz (1/10 s). The recorded 
EEG contains signals at frequencies that are integer mul-
tiples (harmonics) of the frequency at which images are 
presented (base stimulation frequency: 6  Hz). Crucially, 
only if the oddball stimuli are perceived as different of 
the base stimuli, significant EEG responses will also be 
present at the oddball frequency (1.2 Hz and harmonics). 
Since the EEG response at (harmonics of ) these frequen-
cies reflects both the overall noise level and the signal 
unique to the stimulus presentation, we used a baseline-
corrected approach to describe the response in relation 
to the noise level [43, 44]. In particular, 12 surround-
ing frequency bins (eight bins on each side, excluding 
the two bins directly adjacent and the two bins with the 
most extreme value) were used to compute the baseline-
corrected amplitude. Afterwards, for each sweep step, 

3  Only one ASC participant had to repeat the first block (see Results Sect. 1).

http://nocions.webnode.com/letswave
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and stimulus dimension separately, we quantified the 
response by summing these baseline-corrected ampli-
tudes across all consecutive significant harmonics and by 
regions of interest (ROI).

Determination of harmonics
We determined the harmonics for which the amplitude 
was significantly above noise using a z-score approach 
[43, 44]. For all segments, FFT amplitude spectra were 
averaged across subjects, then pooled across all elec-
trodes and across electrodes in the relevant ROIs, and 
the resulting FFTs were then transformed in z-scores 
(computed as the difference between the amplitude at 
each frequency bin and the mean amplitude of the cor-
responding bins divided by the SD of amplitudes in these 
surrounding bins). Significant harmonics corresponded 
with a z-score above 1.64 (or p < 0.05, one-tailed). We 
focused on the EEG segments for which we expected the 
highest oddball activity, i.e., step 7 contrasting the two 
original endpoint stimuli of the assigned stimulus dimen-
sion in the FT-EEG sweep paradigm. Based on this cri-
terion, we quantified oddball responses by summing five 
harmonics: harmonics 1 (1.2 Hz) to 6 (7.2 Hz) excluding 
the harmonic corresponding to the base stimulation fre-
quency (6  Hz). In addition, the general visual response 
was quantified as the sum of the response at the base rate 
(6  Hz) and three consecutive harmonics (12  Hz, 18  Hz 
and 24 Hz).

Determination of ROIs
As in Vos et al., 2023 [45], we wanted to objectively select 
the regions of interest (ROIs) based on the data of all sub-
jects. We determined the ROIs separately for the base 
(6 Hz) and oddball frequency (1.2 Hz) as we expected dif-
ferent patterns of activation for the different frequencies. 
Hence, we calculated the baseline-subtracted amplitude 
across all subjects, all stimuli and each electrode, and 
summed these across the significant base rate and odd-
ball harmonics. All electrodes for which the baseline-
subtracted amplitude of the response was significantly 
higher than the mean response (Bonferroni corrected) 
were retained and grouped in an ROI based on their loca-
tion on the scalp. Similar to multiple studies assessing 
face categorization via FT-EEG [44, 46–49], the analysis 
of the general visual (base rate) response focused on a 
medial occipital ROI (MO: Oz, Iz, O1, O2), a region that 
has been found to be most responsive for base rate stim-
ulation [43, 50]. The oddball analysis focused on a left 
(LOT: P9, PO7) and right occipito-temporal ROI (ROT: 
P10, P8, PO8).

Statistical data analysis
Linear Mixed Models (LMMs) were tested using the 
package afex in R (https://www.R-project.org/; version 

4.2.1) [51]. To assess discrimination sensitivity along the 
stimulus dimension (before and after category learning), 
an LMM was used separately for the baseline-subtracted 
oddball amplitude and behavioral d-prime with assess-
ment moment (before and after category training) and 
either respectively sweep step (steps 2,4,6) or compari-
son (within- versus between- category) as fixed factors. 
To assess categorization performance, an LMM was used 
separately for accuracy, RTs, fitted threshold, and fitted 
slope as dependent measures with block as fixed factor. 
In each LMM, other fixed factors consisted of stimu-
lus dimension (CR and AR) and group (ASC and NT) 
and a random intercept per participant was included to 
account for repeated testing. Each LMM was conducted 
on individual data per participant, aggregated across 
the three sweep trials or five presentations of each pair 
to assess neural or behavioral discrimination sensitivity 
(respectively) and different trials (15 trials per trial bin) 
or stimuli (15 responses per stimulus bin) to assess cat-
egorization performance during training. The dependent 
measures and additional factors will be clarified further 
in each subsection.

Post-hoc contrasts were performed on significant 
interaction effects with factor group (ASC and NT) 
and were tested with multiple comparison correction 
(Tukey method). Extremely outlying data-points (i.e., 
values above Q3 + 3xIQR or below Q1 – 3xIQR, in which 
Q1 and Q3 are the first and third quartile and IQR is the 
interquartile range (IQR = Q3 - Q1)) were removed. All 
assumptions in terms of linearity, normality and constant 
variance of residuals were verified and met for all LMMs. 
For correlation with participant characteristics (which 
were normally distributed), we used Pearson correlation. 
A Pearson’s r of 0.10 is considered as a small effect, 0.30 
as a medium effect and 0.50 as a large effect. Effect sizes 
were reported as Cohen’s d for t-tests (i.e., d = 0.01: very 
small, d = 0.20: small, d = 0.50: medium, d = 0.80: large, 
d > 1.20: very large effect sizes) [52, 53] and as η2 for 
F-tests (i.e., η2 = 0.01: small, η2 = 0.06: medium, η2 = 0.14: 
large effect sizes) [54]. Effect sizes were reported with 
their 95% confidence interval (CI). Calculation of power 
and effect size, the Bayesian statistical analysis, as well as 
statistical results when excluding ASC participants with 
comorbidities, can be found in Supplementary Material.

Sweep FT-EEG measures
Orthogonal task performance and base activity (See Sup-
plementary Material Figure S1)

Oddball activity To compare neural discrimination 
sensitivity along the stimulus dimension, we specifically 
looked at the baseline-subtracted oddball amplitude of 
FT-EEG sweep step 2 and 6 to assess neural sensitivity 
for within the category and step 4 for across the trained 
category boundary. Sweep steps of interest (steps 2,4,6), 

https://www.R-project.org/
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stimulus dimension (CR or AR), ROI (left and right OT), 
assessment moment (before and after category train-
ing), and group (ASC and NT) were included as fixed 
factors. Difference in the direction of the sweep was not 
considered.

Behavioral measures
Same-different discrimination task For the 2-AFC dis-
crimination task, to specifically zoom in on learning 
effects and attention throughout the task, we first inves-
tigated accuracy and RTs across the different blocks (pre-
determined: 4 blocks of 50 trials for each assessment). 
We applied an LMM to the overall accuracy and RTs 
with blocks (4 blocks), assessment moment (before and 
after category training) and group (ASC and NT) as fixed 
factors. We, indeed, found learning effects throughout 
the task mainly for the pre-assessment (see Supplemen-
tary Material Figure S2). Based on the obtained learning 
effect, for further analyses, blocks was added as an extra 
factor.

Our main analysis focused on the d-prime per specific 
pair type (i.e., comparison: within- versus between-cate-
gory) to investigate the presence or absence of categori-
cal perception. The d-prime was calculated as a bias-free 
index of accuracy for each discrimination pair (with hits 
corresponding with the percentage of different responses 
for the different pairs, and false alarms correspond-
ing with the percentage of different responses for the 
same pairs [55]) per participant. Afterwards, an LMM 
was tested for d-prime with comparison (within- ver-
sus between-category), stimulus dimension (CR or AR), 
assessment moment (before and after category training), 
blocks (4 blocks), and group (ASC and NT) included as 
fixed factors. The blocks were included as a nested factor 
within assessment.

Categorization training task For the 2-AFC catego-
rization training, we averaged the accuracy responses of 
150 trials (per block) to 10 trials bins (per block) to inves-
tigate category learning across time. Each trial bin thus 
consisted out of 15 averaged trials. We tested an LMM 
for accuracy and RT with stimulus dimension (CR or 
AR), trial bin (10 trial bins), block (3 blocks) and group 
(ASC and NT) included as fixed factors. The trial bins 
were included as a nested factor in the blocks.

For fitting of the category responses, we averaged 
the responses across the 50 stimuli to 10 stimulus bins 
of each 15 responses. In this way, we could fit the par-
ticipants’ responses with a sampling of 15 responses per 
stimulus bin4. The percentage of the perceived category 
across the 10 stimulus bins was fitted via a psychometric 

4  A reduced number of stimuli were shown at the end-points of the stimu-
lus dimension for block 2 and 3. Hence, the stimulus bins at the end of the 
dimension contained fewer trials than the stimulus bins around the center 
of the dimension.

curve to derive an individual threshold (i.e., category 
boundary) and slope of this category boundary for each 
participant (95% confidence interval) using the logistic 
function (see the quickpsy package in R [56]). For both 
these parameters an LMM was applied with stimulus 
dimension (CR or AR), block (3 blocks) and group (ASC 
and NT) included as fixed factors.

Results
More variability and inaccuracy during initial category 
learning in ASC compared to NT
ASC participants are less accurate at the initial stage of 
category learning
All participants successfully performed the categoriza-
tion training. The average accuracy across the whole 
training was above 65% for each participant. Only one 
ASC participant had an average accuracy below 50% 
and only completed the first blocks of training (block 1 
and 2). This participant was excluded for further analy-
ses comparing discrimination sensitivity before and after 
category learning (see Results Sect. 2).

Figure  2 displays the results of participants’ accuracy 
during the category learning. We observed a significant 
main effect of trial bin (F(1,2156.93) = 141.22, p < 0.001, 
η2 = 0.06, CI: [0.05,1.00]), block (F(2,2157.05) = 52.30, 
p < 0.001, η2 = 0.05, CI: [0.03,1.00]) and group 
(F(1,96.94) = 4.43, p = 0.04, η2 = 0.04, CI: [0.00,1.00]). 
No significant main effect of stimulus dimension 
(F(1,96.94) = 2.71, p = 0.10) was present. In addition, 
we observed a significant interaction effect of trial 
bin x block (F(2,2156.93) = 57.96, p < 0.001, η2 = 0.05, 
CI: [0.04,1.00]), group x block x stimulus dimension 
(F(2,2157.05) = 3.28, p = 0.04, η2 = 0.003, CI: [0.00,1.00]) 
and a marginal significant effect of group x trial bin x 
block x stimulus dimension (F(2,2156.93) = 2.32, p = 0.098, 
η2 = 0.002, CI: [0.00,1.00]). These results point to a gen-
eral lower accuracy for participants with ASC but also 
indicate that participants’ accuracy increased across the 
different trials and blocks, pointing to a learning effect 
during training. Post-hoc testing of the later interactions 
effects, specifically, revealed that differences between 
groups (ASC and NT) were specifically present at the 
initial block of category learning (t(87.9)ASC−NT=-2.13, 
p = 0.04, d=-0.46, CI: [-0.88,-0.03]) and for the CR stimu-
lus dimension (t(88.3)ASC−NT=-2.02, p = 0.046, d=-0.43, 
CI: [-0.85,-0.01]). This indicates that ASC participants 
were slower in learning the categories, especially for the 
CR dimension. No other significant interaction effects 
were present (all p > 0.2).

For RTs, we found a significant main effect of trial bin 
(F(1,2139.76) = 124.67, p < 0.001, η2 = 0.06, CI: [0.04,1.00]) 
and block (F(2,2139.23) = 100.19, p < 0.001, η2 = 0.09, CI: 
[0.07,1.00]), in which RTs significantly decreased across 
trial bins and blocks for both groups. No main effect of 
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group (F(1,82.60) = 0.51, p = 0.48) and stimulus dimen-
sion (F(1,82.60) = 0.22, p = 0.64) was found. We did 
find a significant interaction effect of trial bin x block 
(F(2,2139.30) = 88.20, p < 0.001, η2 = 0.08, CI: [0.06,1.00]), 
trial bin x stimulus dimension (F(2,2139.76) = 5.27 
p = 0.02, η2 = 0.003, CI: [0.00,1.00]), group x block 
(F(2,2139.23) = 4.01 p = 0.02, η2 = 0.004, CI: [0.00,1.00]) 
and group x stimulus dimension (F(1,82.60) = 5.94 
p = 0.02, η2 = 0.07, CI: [0.01,1.00]). Post-hoc testing 
showed that ASC participants responded significantly 
faster (RTs significantly decreased) after the first block 
(t(2141)block1−2=5.50, p < 0.0001, d = 0.24, CI: [0.15,0.32] 
and t(2140)block1−3=3.88, p = 0.0003, d = 0.17, CI: 
[0.08,0.25]) in line with their enhanced category learn-
ing after the initial block. In addition, post-hoc testing 
revealed that NT participants responded faster (lower 
RTs) for the CR dimension compared to ASC participants 
(t(72.0)ASC−NT =1.81, p = 0.07, d = 0.42, CI: [-0.04,0.89]). 
This is in line with ASC participants’ difficulty for cat-
egorization in the CR dimension (cf. accuracy results). 
No other significant interaction effects were present (all 
p > 0.1).

ASC participants show more heterogeneity in the initial stage 
of category learning
When fitting a logistic function to participants’ response 
(i.e., proportion of category ‘A’ or ‘B’ response) across the 
stimulus space, we can obtain two parameters for each 
participant and for each training block: the position of 
the category boundary (i.e., threshold) and the steep-
ness of the category boundary (i.e., slope). Figure 3 dis-
plays the results of participants’ fitted category boundary 
during category learning. Pertaining to the position of 
the category boundary, we observed a significant main 
effect of stimulus dimension (F(1,69.73) = 14.08, p < 0.001, 
η2 = 0.17, CI: [0.05,1.00]). Post-hoc testing showed a slight 
bias in the location of the category boundary for the 
AR dimension (t(70.7)AR−CR=3.75, p = 0.0004, d = 0.89, 
CI: [0.40,1.38], see Supplementary Material Figure S5). 
No significant main effects of group (F(1,69.73) = 0.62, 
p = 0.43) or block were present (F(2,136.48) = 0.35, p = 0.7), 
nor any interaction effects (all p > 0.4). For the steepness 
of the category boundary, we observed a significant main 
effect of block (F(2,139.04) = 19.51, p < 0.001, η2 = 0.22, 
CI: [0.12,1.00]). No significant main effects of group 
(F(1,70.99) = 0.48, p = 0.49) or stimulus dimension were 
present (F(1,70.99) = 1, p = 0.32), nor any significant inter-
action effects (all p > 0.2). Bayesian statistical modelling 
confirmed these findings (Supplementary Material Figure 
S3). Using the Bayesian approach, we found an effect of 

Fig. 2  Results of participants’ accuracy during the category learning. Participants’ accuracy generally increased across each block. The accuracy was lower 
at block 2 and 3 (compared to block 1) because of an increased categorization difficulty of these blocks due to a higher stimulus sampling around the 
trained category boundary. ASC participants were slower in learning the categories. Differences between group (ASC and NT) were prominent at the 
initial block of category learning. *Mean values are plotted with 95% confidence interval
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block (estimate: 0.04, HDI: [0.03,0.05]) and level x block 
(estimate: 0.01, HDI: [0.00,0.01]).

However, when we tested the variability of obtained 
results, we could detect a higher variability in the slopes 
values of the ASC participants (Fvar(111, 110) = 0.63, 
p = 0.02). This effect was especially driven by the initial 
block (Fvar(37,37) = 0.31, p = 0.0005, see Fig. 3).

These results indicate that participants were able to 
quickly distinguish the shapes along the stimulus conti-
nua in two different categories. The Bayesian modeling 
approach points to a significant effect of block. The psy-
chometric approach further specifies that the obtained 
category boundary did not significantly change in subse-
quent blocks, but that participants did learn to be more 
precise in their assignment to the two different categories 
(leading to a significant change in the steepness of the 
slope). We additionally observed significantly higher vari-
ability of the slope of the category boundary for the ASC 
participants, especially in the initial block. In conclusion, 
these results indicate that more participants with ASC 
are less precise/consistent in the initial phase of explicit 
category learning.

Discrimination sensitivity only changes after explicit 
category learning in ASC compared to NT
Behavioral categorical perception is already induced by 
implicit learning in NT
Figure 4 displays the results for the behavioral discrimi-
nation task, both pre- and post-training. For d-prime, 
we observed a significant main effect of comparison (i.e., 
overall increased discrimination sensitivity for pair across 
the category boundary, F(1,1682.02) = 16.05, p < 0.001, 
η2 = 0.01, CI: [0.00, 1.00]), assessment moment (i.e., over-
all increased discrimination sensitivity after training; 
F(1,1682.02) = 77.07, p < 0.001, η2 = 0.04, CI: [0.03,1.00]), 
block (i.e., overall increased discrimination sensitivity 
across the different blocks, F(3,1682.02) = 24.81, p < 0.001, 
η2 = 0.04, CI: [0.03,1.00]), and group (i.e., overall lower 
discrimination sensitivity for ASC, F(1,73.75) = 19.37, 
p < 0.001, η2 = 0.21, CI: [0.09,1.00]). We did not observe 
a main significant effect of stimulus dimension 
(F(1,73.75) = 1.63, p = 0.21).

Most importantly, we observed a significant inter-
action effect of comparison x assessment moment 
x group (F(1,1682.02) = 3.93, p = 0.047, η2 = 0.002, 
CI: [0.00,1.00]). Post-hoc testing revealed that cat-
egorical perception (i.e., increased sensitivity for 
pairs that cross the category boundary compared 
to pairs within the category) is both present before 
(t(1682)between−within=3.02, p = 0.003, d = 0.15, CI: 

Fig. 3  Results of participants’ fitted category boundary during category learning. The obtained category boundary (trained at midpoint of the stimulus 
dimension) in the first block did not significantly change in subsequent blocks. Participants did learn to be more precise in their assignment to the two 
different categories. Precision of category boundary was more variable across the different ASC participants, as evidenced by the larger variability in slope, 
especially in the initial block. *Mean values are plotted with participants’ individual curves

 



Page 12 of 19Van Overwalle et al. Molecular Autism           (2024) 15:23 

[0.05,0.24]) and after (t(1682)between−within=2.07, p = 0.04, 
d = 0.10, CI: [0.01,0.20]) categorization training in the NT 
group, while for the ASC group behavioral categorical per-
ception is absent before training (t(1682)between−within=-0.05, 
p = 0.96, d=-0.003, CI: [-0.10,0.09]) and only present after 
explicit category learning (t(1682)between−within=2.97, 
p = 0.003, d = 0.14, CI: [0.05,0.24]). This implies that 
NT participants already implicitly pick up the underly-
ing characteristics of the stimulus dimension, without 
explicit categorization training, and that this already 
influences their perception. ASC participants, on the 
other hand, are not able to implicitly incorporate the 
underlying dimensions of the stimuli, without explicit 
training (see Fig. 4, left panel). Consequently, their behav-
ioral discrimination sensitivity is only influenced after 
explicit category training (see Fig. 4, right panel). Bayes-
ian statistical modelling confirmed the main findings 
(Supplementary Material Figure S4). We found a clear 
interaction effect of comparison x assessment moment 
x group x stimulus dimension (estimate: 0.41, HDI: 
[0.04,0.78]). This interaction effect, again, indicates that 
NT participants implicitly picked up the underlying cat-
egorical dimension (and therefore already showed a cat-
egorical perception effect) before training in comparison 
to ASC who only showed a categorical perception effect 

after training. This effect seems to be mainly driven by 
the AR stimuli. This is in line with the observed marginal 
interaction effect of assessment moment x group x stimu-
lus dimension (F(1,1682.02) = 2.86, p = 0.09, η2 = 0.002, CI: 
[0.00,1.00]) (see Supplementary Material Figure S6).

We also observed a significant interaction of block 
with assessment moment (F(3,1682.02) = 3.79, p = 0.01, 
η2 = 0.007, CI: [0.00,1.00]) and stimulus dimension 
(F(3,1682.02) = 3.73, p = 0.01, η2 = 0.007, CI: [0.00,1.00]) 
and its marginal interaction with comparison 
(F(3,1682.02) = 2.22, p = 0.08, η2 = 0.004, CI: [0.00,1.00]) 
and group (F(3,1682.02) = 2.23, p = 0.08, η2 = 0.004, CI: 
[0.00,1.00]). Most importantly, we observed a significant 
interaction between assessment moment x block x group 
(F(3,1682.02) = 3.25, p = 0.02, η2 = 0.006, CI: [0.00,1.00]). 
Post-hoc testing showed that the d-prime significantly 
increased across the consequent blocks, and this spe-
cifically for the NT participants in the pre-training 
assessment (t(1682)block2−1=4.41, p = 0.001, d = 0.20, CI: 
[0.10,0.30] and t(1682)block3−2=2.53, p = 0.03, d = 0.12, CI: 
[0.03,0.22]). This is in line with the significantly decreased 
RTs for the NT participants before training across the 
different blocks (Supplementary Material Figure S2) and 
could reflect the implicit learning of the NT participants. 
No other interaction effects were present (all p > 0.1).

Fig. 4  Results for the behavioral discrimination task. Stimulus pairs 1–3 and 5–7 reflect within category perceptual discrimination, while stimulus pair 
3–5 reflects between category perceptual discrimination. Left panel: NT participants implicitly picked up the underlying categorical dimension (and 
therefore already showed a categorical perception effect) before training in comparison to ASC participants. Right panel: ASC participants only showed a 
categorical perception effect after training. Do (visually) note a systemic bias in discrimination sensitivity towards pair 1–3 (compared to pair 5–7). This bias 
seems to be mainly driven by the CR dimension (see Supplementary Material Figure S6). *Mean values (lines) are plotted with 95% confidence interval 
and participants’ individual values (dots)
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Neural discrimination sensitivity changes only after explicit 
category learning in ASC
Figure 5 displays the results for the neural FT-EEG sweep 
oddball amplitudes. Using this direct neural approach, 
we observed a significant main effect of sweep step 
(F(2,741.11) = 128.98, p < 0.001, η2 = 0.26, CI: [0.21,1.00]), 
which is clearly represented in the increasing baseline-
subtracted oddball amplitude along the dimension. We 
observed a marginal main effect of assessment moment 
(F(1,732.37) = 3.64, p = 0.06) and no effect of group 
(F(1,65.58) = 0.44, p = 0.51).

Most interestingly, we observed a significant three-way 
interaction of sweep step x assessment moment x group 
(F(2,732.39) = 5.08, p = 0.006, η2 = 0.01, CI: [0.00,1.00]). 
Post-hoc testing revealed that the neural sensitivity 
at the category boundary (i.e., hallmark of categori-
cal perception) significantly increased after explicit cat-
egory learning as compared to pre-training for ASC 
participants (t(737)post−pre=2.69, p = 0.007, d = 0.20, 
CI: [0.05,0.34]). This is not the case for the NT par-
ticipants, who had similar levels pre- and post-training 
(t(736)post−pre=0.01, p = 0.99), which is in line with the 

Fig. 5  Oddball results for the neural FT-EEG sweep (averaged across both ROIs). Left panel: Analyses revealed that the neural sensitivity at the category 
boundary (see dashed line, i.e., hallmark of categorical perception) did not significantly differ after explicit category learning (compared to before) for NT 
participants. Right panel: We did find a significant increase in neural sensitivity at the category boundary after explicit category learning (compared to 
before) for the ASC participants. The bottom panel shows the head topographies along the 7 sweep steps. *Error bars correspond to standard errors of 
the mean
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behavioral discrimination data (in which NT already 
showed the categorical perception effect before the 
training).

Finally, we observed significant main effects of ROI 
(F(1,732.68) = 17.96, p < 0.001, η2 = 0.02, CI: [0.01,1.00]) 
and stimulus dimension (F(1,65.58) = 10.38, p = 0.002, 
η2 = 0.14, CI: [0.03,1.00]). This indicates a higher elic-
ited baseline-subtracted oddball amplitude along the 
FT-EEG sweep for the right OT (t(737)left−right=-4.24, 
p < 0.001, d=-0.31, CI: [-0.46,-0.17]) and AR dimension 
(t(69.8)AR−CR=3.22, p = 0.002, d = 0.77, CI: [0.28,1.25]). 
We also observed a significant interaction effect of 
ROI x sweep step (F(2,732.67) = 3.86, p = 0.02, η2 = 0.01, 
CI: [0.00,1.00]), stimulus dimension x sweep step 
(F(2,741.11) = 8.46, p < 0.001, η2 = 0.02, CI: [0.01,1.00]), 
ROI x stimulus dimension (F(1,732.68) = 6.79, p = 0.009, 
η2 = 0.01), assessment moment x group x stimulus 
dimension (F(1,732.37) = 4.88, p = 0.03, η2 = 0.007, CI: 
[0.00,1.00]), sweep step x ROI x stimulus dimension 
(F(2,732.67) = 5.44, p = 0.005, η2 = 0.01, CI: [0.00,1.00]), 
and a marginal interaction effect of sweep step x group 
x stimulus dimension (F(2,741.11) = 2.90, p = 0.06, 
η2 = 0.008, CI: [0.00,1.00]). Post-hoc testing (on interac-
tion effects with group) revealed that increased discrimi-
nation sensitivity after training was mainly due to the AR 
dimension for the ASC participants (t(737)post−pre=2.11, 
p = 0.03, d = 0.16, CI: [0.01,0.30]) and that ASC partici-
pants displayed a reduced neural category tuning for 
the CR dimension (i.e., an enhanced neural discrimina-
tion sensitivity towards the start of the CR dimension; 
t(737)level2−4=-1.21, p = 0.45, d=-0.09, CI: [-0.23,0.06], see 
Supplementary Material Figure S6). This is in line with 
behavioral results which showed increased category 
learning of ASC participants for the AR dimension dur-
ing training (compared to the CR dimension) and a bias 
in behavioral discrimination sensitivity (for both groups) 
towards the start of the CR dimension (i.e., pair 1–3, 
see Fig. 4). No other interaction effects were present (all 
p > 0.1).

Finally, the lack of group differences in terms of 
orthogonal color change detection task performance 
and base-rate synchronization amplitude during FT-
EEG assessments (Supplementary Material Figure S1) 
confirms that there are no systematic changes in pro-
cessing demands (e.g., effort or attention) or brain syn-
chronization and that potential differences in oddball 
activity between groups are thus due to effectively per-
ceived stimulus differences.

Correlations with participants’ characteristics
Learning differences are more pronounced across AQ 
characteristics
When we correlated accuracy of the three different cat-
egorization training blocks (averaged across the different 

trial bins) with questionnaire scores of the participants, 
we found a significant negative correlation with AQ char-
acteristics for block 1 (r=-0.26, p = 0.02). This correlation 
indicates that participants with higher AQ scores per-
formed worse in the categorization training. For the esti-
mated threshold and slope for the fitted logistic function 
across the blocks, we only found a marginally significant 
negative correlation with AQ characteristics in block 1 
for the slope values (r=-0.19, p = 0.09). This was mainly 
driven by the CR dimension (r=-0.30, p = 0.07). No signif-
icant correlations were found for the GSQ scores.

Differences in behavioral discrimination sensitivity are driven 
by AQ and GSQ characteristics
When we correlated the behavioral categorical percep-
tion effect (i.e., difference in discrimination sensitivity of 
pairs between versus within the category) with partici-
pants’ characteristics, we found a significant correlation 
with AQ scores for the pre-training assessment (r=-0.27, 
p = 0.02). This negative correlation seemed to be spe-
cifically driven by the AR dimension (r=-0.44, p = 0.005). 
This correlation indicates that participants with lower 
AQ scores are better able to implicitly pick up the under-
lying categorical dimension (and therefore already show 
a categorical perception effect for the dimension) before 
training in comparison to participants with higher AQ 
scores. This indicates that our main finding, that NT but 
not ASC participants already implicitly picked up the 
underlying dimensions of the stimuli without explicit 
training, could mainly be driven by their lower AQ char-
acteristics. In Fig. 6, we can see that this effect is mainly 
driven by the NT participants (AR: r=-0.36, p = 0.02 in 
Fig. 6A and AR pre-training: r=-0.50, p = 0.03 in Fig. 6B). 
There was also a marginal correlation effect present post-
training for the ASC participants (AR: r=-0.42, p = 0.07, 
Fig. 6B and both dimensions: r=-0.28, p = 0.09). This sug-
gests that ASC participants with higher AQ traits showed 
a decreased categorical perception effect after training. 
We also found a significant negative correlation of the 
behavioral categorical perception effect with GSQ scores 
for the pre-training assessment (r=-0.29, p = 0.01). This 
was also mainly driven by the AR dimension (r=-0.37, 
p = 0.02).

When we examined the overall behavioral discrimina-
tion sensitivity in general (i.e., not taking into account the 
position along the category dimension and the pre- ver-
sus post-training assessment), we could find a significant 
negative correlation with both AQ- and GSQ-scores (AQ: 
r=-0.44, p < 0.0001 and GSQ: r=-0.26, p = 0.02). Moreover, 
for the GSQ scores this correlation was mainly driven by 
the hypo-sensitivity sub-score (r=-0.27, p = 0.02). This is 
in line with overall reduced d-prime values for the ASC 
participants and could suggest that this effect is mainly 
driven by their hypo-sensitivity characteristics.
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Finally, when we correlated the neural categorical per-
ception effect (i.e., sensitivity at the category boundary 
before and after training) and overall neural sensitiv-
ity with AQ-, and GSQ-scores across the participants, 
we found no significant correlation with participant 
characteristics.

Discussion
In this study, we investigated categorization learning of 
highly controlled artificial (and thus unfamiliar) stim-
uli, as well as discrimination sensitivity of these stimuli 
before and after category learning in 38 ASC versus 38 
NT adults. We combined direct and automatic FT-EEG 
measures with a standard psychophysical behavioral dis-
crimination task, to obtain a full picture of possible dif-
ferences in discrimination sensitivity and categorical 
perception before and after category learning.

Autistic adults are slower and show more heterogeneity at 
the initial stages of category learning
Participants were assigned to be tested and trained on 
one of the two shape dimensions (aspect-ratio or curva-
ture). Category learning consisted of an explicit training 
to assign a presented stimulus correctly to one of two 
(arbitrary) categories. Participants had to infer the cat-
egory boundary along the underlying stimulus dimension 
and learn to group the stimuli in two categories based 
on feedback. No direct instructions were offered apart 
from the explicit feedback on every trial. We adminis-
tered three training blocks with increasing difficulty level 
(i.e., by increasing the number of stimuli near the cate-
gory boundary). We found a significant accuracy differ-
ence between the ASC and NT group, which was mainly 

driven by group differences in performance at the initial 
stage of training on the curvature dimension. Individual 
differences in training accuracy on the initial block were 
related to AQ scores. More specifically, reduced/slower 
learning at the beginning of the categorization task was 
associated with higher autistic traits.

While investigating the position and slope of the fitted 
category boundary, we found a general learning effect 
across the training (i.e., an increase in steepness of the 
category boundary), but no group difference. However, 
we did observe increased variability in the ASC group at 
the initial stage of training, suggesting that some autis-
tic individuals show inconsistency at the initial stages 
of category learning. This was confirmed by a marginal 
negative correlation between the slope values and the AQ 
characteristics of the participants, indicating a less steep 
slope for higher autistic traits.

Autistic adults only show a categorical perception effect 
after explicit category learning
When investigating behavioral discrimination sensitivity 
before and after category learning, we found an overall 
increased perceptual discrimination for the NT group. In 
addition, even prior to the training, the NT participants 
already showed the behavioral hallmark of categorical 
perception (i.e., increased discrimination sensitivity for 
pairs crossing the category boundary as compared to 
pairs falling within the same category), suggesting that 
NT participants were already able to implicitly derive 
the underlying stimulus dimension(s). Importantly, this 
was not the case for the autistic participants: before the 
training, their discrimination sensitivity was highly sim-
ilar along the entire stimulus dimension, and only after 

Fig. 6  Correlations of behavioral categorical perception and participants characteristics. (a) We found a significant negative correlation of the behavioral 
categorical perception effect with AQ scores for the AR dimension. (b) This was specifically driven by the results before training for the NT participants. 
We also found a marginal significant negative correlation effect after training, specifically for the ASC participants
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explicit training did the categorical processing emerge 
and influence their percept. NT participants were mainly 
able to implicitly pick up the underlying dimension and 
consequently show the behavioral categorical perception 
effect for the aspect-ratio dimension compared to the 
curvature dimension. This aligns with the significant neg-
ative association between the behavioral categorical per-
ception effect and AQ- and GSQ-characteristics which 
was specifically driven by AR dimension.

The neural FT-EEG data confirms that the automatic 
and direct neural oddball response can be used as neu-
ral discrimination sensitivity index (i.e., oddball response 
increases with increasing difference between the oddball 
and base stimulus). Even though we found no group dif-
ference in general neural discrimination sensitivity, we 
did observe a significant three-way interaction between 
sweep step, assessment moment, and group. This impli-
cates an enhanced neural discrimination sensitivity at 
the category boundary after training (versus before) for 
the ASC group but not for the NT group. Similar to the 
behavioral data, this suggests that the NT participants 
already displayed maximal neural categorical process-
ing before the training and that (in comparison) autistic 
participants’ automatic neural categorical processing 
improved significantly throughout the training. More-
over, the lack of group differences in terms of orthogonal 
color change detection task performance and base-rate 
synchronization amplitude during FT-EEG assessment(s) 
confirms that these observed group differences in base-
line-subtracted oddball amplitude are due to perceived 
stimulus differences and not to systematic changes in 
processing demands (e.g., effort or attention) or brain 
synchronization.

Difference in learning style in adults with autism
Overall, our results confirmed the findings of Soulières 
et al. (2007, 2011) in adolescents and young adults with 
autism [22, 23]. In particular, we replicated their results 
(on naturally categorically perceived figures  [22]) and 
showed here that autistic individuals are less accurate and 
more autistic individuals are less consistent/precise at 
the initial stages of category learning on unfamiliar (i.e., 
artificial) stimuli. We also replicated that autistic adults 
do not show a spontaneous induced behavioral categori-
cal perception effect when presented with unfamiliar 
(i.e., artificial) stimuli with pre-existing dimensions (i.e., 
elongation, curvature, etc.). However, after these autis-
tic adults performed an explicit categorization training, 
we reported that these autistic individuals did reveal the 
typical behavioral categorical perception effect. This was 
also confirmed by our significant correlation with autistic 
characteristics and additional neural FT-EEG measure-
ments, which show an increased neural discrimination 

sensitivity at the category boundary after category learn-
ing only for autistic adults.

In conclusion, autistic adults do not spontaneously 
detect underlying categorical dimensions (i.e., lack of cat-
egorical perception before training) and they have more 
difficulties learning to categorize (i.e., slower emergence 
during explicit training). This is in line with a difference 
in learning style as proposed by Qian & Lipkin (2011) 
[12]. As postulated by these authors, autistic individu-
als would be biased towards a look-up table style while 
NT individuals would be biased towards an interpola-
tion style. This was later refined by Sapey-Triomphe, not 
as an inability to use interpolation rules, but as a disin-
clination to infer such rules in ASC [25]. Our results are 
in line with this view, showing that ASC individuals are 
not able to implicitly pick up a (INT-based) categorical 
dimension, but when they are explicitly trained (not via 
instructions but through feedback), they are able to infer 
the underlying (INT) category rule. We further refine this 
by showing that, even though they are able to explicitly 
learn, initially they are more inconsistent and less accu-
rate in their training.

Differences in processing of the different dimensions
We found differences in the processing of the curvature 
and aspect-ratio dimensions. We did not find any differ-
ences in the base amplitude of neural FT-EEG sensitiv-
ity assessment between the two dimensions. However, we 
found differences for the behavioral tasks and the oddball 
amplitude of neural FT-EEG sensitivity assessment. In 
general, the aspect-ratio stimuli elicited higher oddball 
amplitudes than the curvature dimension and the cur-
vature dimension was more difficult to implicitly (before 
training by the NT) and explicitly (during training by the 
autistic individuals) pick up and/or use. Note that the 
category boundary for this curvature dimension is not 
positioned at an intrinsically evident position (because 
the dimension does not go from curved to fully straight), 
which also explain the bias in discrimination sensitivity 
for the CR dimension, specifically for the neural tuning 
in ASC participants. Hence, the reduced accuracy at the 
initial stage of category learning could be partly related to 
an initial inflexibility of the ASC individuals to adjust (as 
postulated by HIPPEA) [15, 57]. However, we could not 
find a significant effect in location of the category bound-
ary for the CR dimension during training.

Behavioral and neural discrimination sensitivity
In contrast with the prevailing idea of enhanced percep-
tual sensitivity and discrimination in ASC (e.g., Mot-
tron et al. (2006) [6]), here, we show an overall reduced 
behavioral discrimination sensitivity of autistic versus 
NT participants. A possible explanation for the reduced 
behavioral discrimination in ASC could be the very short 
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simultaneous presentation of the stimuli (i.e., 200 ms). 
This presentation duration is comparable to the (sequen-
tial) presentation time of stimuli during the FT-EEG 
sweep (i.e., 160 ms), where no group differences have 
been observed. However, due to the simultaneous pre-
sentation and the execution of the discrimination task 
(i.e., deciding whether the stimuli are same or differ-
ent), behavioral discrimination requires more processing 
demands in both groups (and even more so in the ASC 
group). We could find a significant negative correlation 
of the overall behavioral discrimination sensitivity with 
autistic characteristics. This effect was mainly driven by 
their hypo-sensitivity characteristics. We could not find 
a significant correlation of neural discrimination sensitiv-
ity with autistic characteristics. This is similar to earlier 
results which failed to find correlations for neural sen-
sory sensitivity and self-reported sensitivity and respon-
sivity [58].

Finally, we note the right lateralization of neural per-
ceptual discrimination response to the stimuli. We pro-
pose that this might be due to the asymmetry of these 
stimuli (i.e., the main body of the stimulus is positioned 
in the left visual field while the tips of the stimuli are 
positioned in the right visual field) which elicited a higher 
response in the corresponding right occipitotemporal 
cortex. This interpretation is in line with results on cat-
egorical processing of more naturally categorically per-
ceived shapes [35] unlike faces which always elicited a 
right-lateralized response [44, 50]). Do note that the dif-
ferences in size of the selected left and right ROI war-
rants a cautious interpretation.

Limitations and future directions
Data-collection happened during the COVID-19 pan-
demic which led to dispersed data-collection between 
the different participants. Do note that the dispersed 
testing over time was similar for both groups (NT ver-
sus ASC). Although the large sample size enabled us 
to detect effects with rather small (approximate) effect 
sizes, we note that some of the obtained effect sizes for 
the interactions of interest were even smaller than the a 
priori-determined effect size. Moreover, 14 of the 38 ASC 
participants displayed a comorbid disorder. However, 
general trends and conclusions remained after excluding 
participants with comorbidities in the analyses (see Sup-
plementary Material). In a follow-up study, we will use 
the full two-dimensional artificial space to specifically 
investigate category learning and subsequent generaliza-
tion. For future studies, it would also be interesting to 
investigate categorization and perceptual discrimination 
of visual stimuli for which the dimensions underlying the 
construction of the shapes do not match the features and 
dimensions that people see in them, such as stimuli that 
consist of complex shapes defined by radial frequency 

components (RFCs) [59, 60]. Finally, it would be inter-
esting to investigate these perceptual processes across 
development.

Conclusions
In this study with 38 autistic versus 38 non-autistic 
adults, we investigated categorization learning of highly 
controlled artificial stimuli, as well as neural and behav-
ioral discrimination sensitivity of these stimuli before 
and after categorization training. We found that autistic 
adults are less accurate and more uncertain at the ini-
tial stages of learning compared to non-autistic adults. 
In addition, whereas non-autistic participants implic-
itly grasp the category boundary of an artificial stimulus 
dimension, autistic individuals’ behavioral and neural 
discrimination sensitivity at the category boundary only 
changes after explicit category learning. These results 
replicate and extend earlier findings and provide evi-
dence for a difference in sensory processing and learning 
in ASC.
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