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Abstract 

Background  Very large sample sizes are often needed to capture heterogeneity in autism, necessitating data shar-
ing across multiple studies with diverse assessment instruments. In these cases, data harmonization can be a criti-
cal tool for deriving a single dataset for analysis. This can be done through computational approaches that enable 
the conversion of scores across various instruments. To this end, our study examined the use of analytical approaches 
for mapping scores on two measures of adaptive functioning, namely predicting the scores on the vineland adaptive 
behavior scales II (VABS) from the scores on the adaptive behavior assessment system II (ABAS).

Methods  Data from the province of Ontario neurodevelopmental disorders network were used. The dataset included 
scores VABS and the ABAS for 720 participants (autism n = 547, 433 male, age: 11.31 ± 3.63 years; neurotypical n = 173, 
95 male, age: 12.53 ± 4.05 years). Six regression approaches (ordinary least squares (OLS) linear regression, ridge 
regression, ElasticNet, LASSO, AdaBoost, random forest) were used to predict VABS total scores from the ABAS scores, 
demographic variables (age, sex), and phenotypic measures (diagnosis; core and co-occurring features; IQ; internal-
izing and externalizing symptoms).

Results  The VABS scores were significantly higher than the ABAS scores in the autism group, but not the neurotypi-
cal group (median difference: 8, 95% CI = (7,9)). The difference was negatively associated with age (beta = -1.2 ± 0.12, 
t = -10.6, p < 0.0001). All estimators demonstrated similar performance, with no statistically significant differences 
in mean absolute error (MAE) values across estimators (MAE range: 4.96–6.91). The highest contributing features 
to the prediction model were ABAS composite score, diagnosis, and age.

Limitations  This study has several strengths, including the large sample. We did not examine the conversion 
of domain scores across the two measures of adaptive functioning and suggest this as a future area of investigation.
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Background
Autism is a highly heterogeneous condition with large 
variability in etiology, neurobiology, and phenotype [6, 
14], reflecting the multiplicity of mechanisms that may 
drive the type and intensity of differences in the core 
and co-occurring domains. For example, several high 
impact genetic variants, affecting multiple biological 
pathways, have been associated with autism, but these 
differences are present in less than 20% of autistic indi-
viduals [23]. Significant heterogeneity also exists in the 
neurobiology of autism, with mixed findings reported 
for differences in brain structure, function, and connec-
tivity [5, 8, 12].

This heterogeneity significantly challenges statistical 
approaches traditionally used in autism research and 
can manifest as small effect sizes and difficulties with 
replicability [9, 16]. To understand and capture this 
heterogeneity, very large sample sizes, often involving 
thousands of participants, are needed [14]. At the same 
time, the obtainable sample size from a single study site 
or research study is limited by the cost and resources 
needed for data collection. To address this issue, there 
is significant interest in data sharing across multiple 
sites and studies to increase the sample size and diver-
sity. Examples of data collection networks that engage 
in data sharing initiatives within the autism research 
community include the Province of Ontario Neurode-
velopmental Disorders (OBI-POND) network, the 
Autism Brain Imaging Data Exchange Autism Innova-
tive Medicine Studies-2-Trials (AIMS-2-TRIALS) Lon-
gitudinal European Autism Project (LEAP) ([6, 16], 
the Healthy Brain Network (HBN). More recently, the 
Autism Sharing Initiative (https://​www.​autis​mshar​
ingin​itiat​ive.​org/) has been established to create the 
first international platform for federation (a decentral-
ized approach to analysis where data from multiple 
cohorts are processed locally and not exchanged or 
pooled [21]) of autism research data.

Data sharing among multiple sites and studies comes 
with many challenges, including data harmoniza-
tion (i.e., the process of combining data from multi-
ple sources to derive a single and cohesive dataset for 
analysis purposes). An example of data harmoniza-
tion is statistical corrections applied to neuroimaging 
data collected across multiple sites for effects of dif-
ferences in scanning sequences/protocols [13]. Data 

harmonization can also be a significant effort for phe-
notypic measures, especially when different instru-
ments or versions of the same instrument are used 
across studies to characterize symptoms within a single 
domain. For example, autism features can be quantified 
using various measures including the Social Commu-
nication Questionnaire (SCQ,e.g., POND) [17] and the 
Social Responsiveness Scale (SRS,e.g., LEAP) (Constan-
tino et  al., 2003). While these measures conceptually 
quantify features within similar domains, their scores, 
although correlated, may not be directly comparable 
[7]. This challenges the feasibility of combining data 
across multiple studies and cohorts, necessitating the 
development of computational approaches that enable 
the conversion of scores across various instruments. To 
this end, our study examined the use of different ana-
lytical approaches for mapping scores on two measures 
of adaptive functioning to each other.

Adaptive functioning quantifies the skills necessary 
for performing everyday tasks across domains of func-
tion [3]. Our study focused on two of the most com-
monly used instruments for adaptive functioning, 
namely the VABS [18] and the ABAS instruments used 
in LEAP and POND [11]. Both assessment systems 
provide a standardized composite score representing 
skills across the domains of adaptive function. Previous 
investigations have shown moderate to high correla-
tion between VABS and ABAS scores, for both inter-
view and questionnaire forms of VABS [7] (Sparrow 
et al., 2005). However, in two studies involving samples 
of autistic children, systematic differences between the 
VABS and ABAS were found. While the rank ordering 
of the participants was relatively preserved between 
the two measures, the ABAS composite scores were 
9.2 points lower than the VABS composite, on average. 
Furthermore, the ABAS had relatively lower specificity 
for establishing adaptive functioning below the cut-off 
of 70. Despite this, scores on the two measures were 
highly correlated with a Pearson correlation of 0.78 for 
composite scores, and a range of 0.66 to 0.77 for con-
ceptually similar subdomains [7, 15]. These systematic 
differences motivate the need for harmonization, while 
the high correlations support the feasibility of this 
approach. In this context, the objective of our study 
was to examine the utility of different computational 
approaches to map VABS to ABAS scores.

Conclusion  Overall, our results supported the feasibility of harmonization. Our results suggest that a linear regression 
model trained on the ABAS composite score, the ABAS raw domain scores, and age, sex, and diagnosis would provide 
an acceptable trade-off between accuracy, parsimony, and data collection and processing complexity.

https://www.autismsharinginitiative.org/
https://www.autismsharinginitiative.org/
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Methods
Participants
The data used in this study were collected by the Prov-
ince of Ontario Neurodevelopmental Disorders (OBI-
POND) network. POND participants are recruited across 
five sites in Ontario, Canada (Holland Bloorview Kids 
Rehabilitation Hospital, The Hospital for Sick Children, 
McMaster University, Lawson Health Research Institute, 
and Queen’s University). Participants at all sites receive 
the same phenotypic measures. The POND data export 
was obtained on July 23, 2021 and included a subset of 
participants 6–21 years old who had completed both the 
ABAS and VABS assessments between March 2012 and 
November 2019. VABS assessments were not collected in 
POND after 2019 and as such our dataset include the full 
set of participants for whom both ABAS and VABS data 
are available. The age range was chosen to align with the 
age range for the ABAS-II school-age form, while mini-
mizing the overlap with the preschool form. Participants 
had a primary diagnosis of autism confirmed using the 
Autism Diagnostic Observation Schedule–2 (ADOS) 
(Lord et al. 2000) and the Autism Diagnostic Interview–
Revised (ADI-R) (Lord et al. 1994), or were neurotypical 
(NT; no history of a neurodevelopmental, psychiatric, or 
neurological diagnosis, born after 35  weeks gestation). 
The data were included for participants who had both 
VABS and ABAS measures available.

Instruments/measures
The vineland adaptive behavior scales II (VABS) scores 
used in this study were obtained by a researcher using 
a semi-structured interview with a parent/primary 
caregiver (Sparrow et  al., 2005). The VABS items are 
scored on a 3-point scale: 0 = behavior never performed, 
1 = behavior sometimes or partially performed, and 
2 = behavior usually or habitually performed. This instru-
ment provides a composite score as well as domain scores 
for communication, daily living skills, socialization, and 
maladaptive behaviors (optional) (Sparrow et  al., 2005). 
In this analysis, we examined the prediction of the VABS 
composite score (age-normed standard scores; mean 
100 ± 15).

The adaptive behavior assessment system II (ABAS) 
was administered through the parent/primary caregiver 
forms for 5–21 years and completed by a parent or car-
egiver [11]. ABAS items are rated on a four-point scale 
ranging from 0 = is not able, 1 = never when needed, 
2 = sometime when needed, 3 = always when needed. 
The ABAS measures adaptive function in 10 skill areas 
(communication, functional academics, self direction, 
community use, home living, health and safety, self 
care, leisure, social, work). The scaled skill area scores 
are aggregated into age-normed standard scores (mean 

100 ± 15) for three domains (conceptual, practical, social) 
and a total composite score [11]. The work skill area 
was excluded from the present analyses given the par-
ticipants’ age. For the prediction task, we used both the 
raw skill area scores (sum of questionnaire items and the 
scaled skill area scores (age-normed, mean 10 ± 3. Unlike 
the VABS, ABAS composite scores have a floor of 40 
and an age-dependent ceiling: 160 for 0–5 years, 130 for 
5–7 years, and 120 for 8–89 years [11].

To further characterize the sample, IQ was measured 
using measures appropriate for the child’s age and ability 
level (the Wechsler Abbreviated Scale of Intelligence, the 
Wechsler Intelligence Scale for Children, and the Stan-
ford Binet Intelligence Scales). Autism-like traits were 
quantified using the Social Communication Question-
naire (SCQ)—Lifetime form [17]. ADHD-like traits were 
measured using the Strengths and Weaknesses of Atten-
tion-Deficit/Hyperactivity Disorder Symptoms and Nor-
mal Behavior Scale (SWAN) parent questionnaire which 
provides two subscale scores of inattentive and hyperac-
tive/impulsive [20]. Emotional and behavioral symptoms 
were measured using the child behavior checklist (CBCL 
[1, 2]) parents/primary caregivers version, Internalizing 
and Externalizing scores, respectively. ADHD and emo-
tional/behavioural symptoms were selected to character-
ize the sample given their relatively high prevalence in 
autism (Lai et al., 2019).

Analytic approach
Statistical tests were conducted in R version 4.3.0 and 
prediction analyses were performed using scikit-learn 
version 1.0.2. In this analysis, we predicted VABS scores 
from ABAS scores given that ABAS is a parent-reported 
measure and may offer advantages in terms of scalabil-
ity and cost. We used six regression approaches, namely, 
ordinary least squares (OLS) linear regression, ridge 
regression [4], ElasticNet [24], LASSO [22], AdaBoost 
[10], and random forest (Breiman, 2001). The choice of 
linear regression models (OLS, ridge, ElasticNet, and 
LASSO) was motivated by the previously reported linear 
association between VABS and ABAS scores [7]. Noting 
that demographic and phenotypic predictor variables are 
highly correlated in our datasets (e.g., sex, age, autism/
ADHD features), we employed ridge regression, Elas-
ticNet, and LASSO, which provide relative strengths in 
handling multicollinearity compared to OLS regression 
(Variance inflation factors between 1.1 and 12.8). Ada-
Boost and random forest regression were used as two 
ensemble regressors (collection of several regressors) 
which can improve the bias and variance of estimation 
through the use of multiple estimators.

In all models, the VABS composite scores were pre-
dicted as outcomes. We have chosen to go from ABAS 
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to VABS given that the ABAS may be more scalable 
and cost effective in terms of administration as a par-
ent-rated questionnaire (versus the VABS clinician 
interview), and as such may be more practical to use 
in a wider range of settings, especially in applications 
involving the creation of large data cohorts [7].

Four sets of predictor variables were examined. First, 
we established a minimum set of variables consisting 
of only the ABAS general composite score (set 1). The 
second set included the ABAS composite as well as 
age, sex, and diagnosis (set 2). Age was included in this 
set given previous findings of residual association with 
age in the VABS [7]. The third set included variables 
in set 2 in addition to ABAS raw scores (set 3). These 
were included to mitigate the impact of ABAS floor 
and ceiling. The fourth feature set included variables 
in set 3 as well as IQ, SCQ, SWAN, and CBCL inter-
nalizing and externalizing problems (set 4). The SCQ, 
SWAN, and CBCL variables were included in the pre-
diction to examine the impact of core autism features 
and frequently co-occurring symptoms (inattention, 
hyperactivity, internalizing, externalizing) on the differ-
ence between VABS and ABAS scores. This was based 
on previous findings of residual association of VABS 
scores with these domains. For example, IQ was found 
to explain 46.6% of the variance in VABS composite 
scores, but only 36.4% in the ABAS composite scores 
[7].

We ran the six models with each feature set for par-
ticipants who had complete scores for all assessments 
included in the analysis as well as the autism group only 
(6 models × 3 features × 2 groups). Additionally, sensitiv-
ity analysis was conducted by running models for feature 
sets 2 and 3 using the subset of participants included 
in feature set 4. We also examined the effect of fam-
ily nesting, by comparing the performance of the linear 
regression model with and without accounting for fam-
ily nesting by including family as a random effect in the 
model (set 2). Furthermore, we ran the models on a sub-
set of the participants that included one, randomly cho-
sen child from each family.

To evaluate model performance, tenfold stratified cross 
validation was used. Folds were stratified based on VABS 
composite scores (10 point bins were used for scores 
between 60 and 110), sex, and diagnosis. Median abso-
lute error (MAE) was used as a measure of the residuals 
magnitude to quantify the difference between predicted 
and true VABS scores. To understand the sources of 
prediction error, we examined the association between 
the error from the above linear regression model and 
the covariates. Residuals were computed as the differ-
ence between the predictions of VABS scores and their 
true values. Predicted scores were obtained from using a 

linear regression model with coefficient obtained through 
1000 bootstrap iterations on feature set 2.

The contribution of each variable to the model was 
quantified using the permutation feature importance 
approach which computes feature importance as the 
decrease in the model R-squared when a given feature 
is randomly shuffled (Permutation Feature Importance, 
n.d.).

Results
Sample characteristics
The POND sample consisted of 1025 participants with 
Vineland scores available who were neurotypical or had a 
diagnosis of autism. Of these participants, 920 had com-
pleted ABAS scores. Exclusion of participants younger 
than 6  years old and having more than two year differ-
ence between ABAS and VABS assessment resulted 
in the sample size of 720. The final sample consisted of 
a total of 720 participants (autism n = 547, neurotypical 
n = 173), as described in Table  1. The dataset contained 
data from the following sites: Holland Bloorview Kids 
Rehabilitation Hospital (n = 377), Hospital for Sick Chil-
dren (n = 1), Lawson Health Sciences (n = 25), McMaster 
University (n = 183), and Queen’s University (n = 134). 
VABS assessments occurred after ABAS assessments for 
the majority of the sample (median difference = 8  days; 
IQR = 61  days). Feature sets 1, 2, 3, and 4 contained 
n = 720, n = 720, n = 719, and n = 615, respectively. Char-
acterization of the excluded participants is provided in 
Supplementary Table 1.

Characterization of the ABAS‑VABS difference
Figure 1 depicts the difference between VABS and ABAS 
scores for male and female participants in the autism and 
neurotypical groups, with linear regression lines fitted 
individually for each group. The VABS-ABAS difference 
was significantly higher for the autism group (difference 
mean = − 8.0, SE = 1.1, t = − 7.45, p < 0.0001). The con-
clusions remained unchanged after accounting for fam-
ily nesting (difference mean = − 8.3, SE = 1.1, t = − 7.48, 
p < 0.0001). For the autistic group, the VABS scores were 
significantly greater than ABAS scores (Wilcoxon signed 
rank test; Z = 13.20, p < 0.0001, estimated median differ-
ence: 8.0, 95% CI = (7,9)), but this difference was not sta-
tistically significant for the neurotypical group (Wilcoxon 
signed rank test; Z = 1.08, p = 0.30, estimated median dif-
ference: − 1.0, 95% CI = (− 3.5,1.0)). The difference was 
significantly associated with age (beta = − 1.1, SE = 0.1, 
t = -9.70, p < 0.0001), but not with sex (beta = 0.7, SE = 1.0, 
t = 0.72, p = 0.47). The conclusions remained unchanged 
after accounting for family nesting (age: beta = − 1.1, 
SE = 0.1, t = − 9.84, p < 0.0001; sex: beta = 0.7, SE = 1.0, 
t = 0.74, p = 0.46). Floor effects were observed for the 
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ABAS at composite scores of 40 for 63 of participants in 
the autism group (9%). Ceiling effects were found at an 
ABAS composite score of 120 for one participant in the 
autism group (0.1%) and 34 neurotypical participants 
(28%).

Prediction of VABS scores
Prediction performance is reported for the six computa-
tional models and four feature sets in Table 2. All estima-
tors demonstrated similar performance on a given feature 
set, with no statistically significant differences in MAE 
values across estimators (Wilcoxon test across cross-
validation folds with Bonferroni correction; MAE range: 
4.96–6.91). Although feature sets 2–4 resulted in lower 

error values, the differences were smaller than the clini-
cally significant difference of 2–3.75 points for the VABS 
(Chatham et al., 2018). When using the autism-only sub-
sample, the MAE decreased across all estimators (MAE 
range: 4.80–6.83). Again, the differences were smaller 
than the clinically significant difference. The results of 
sensitivity analysis, including MAE for models 2 and 3 
for the subset of participants included in feature set 4 are 
provided in Supplementary Table 2.

For the linear regression model, the coefficient esti-
mates and their standard error for feature set 2 were: 
intercept: mean = 58.10, SD = 2.66; ABAS GAC: 
mean = 0.57, SD = 0.02, age: mean = − 1.05, SD = 0.10; 
sex: mean = − 0.96, SD = 0.91; diagnosis: mean = − 11.35, 

Table 1  Demographic characteristics of the sample included in analyses

The reported values are median (IQR) for continuous measures and absolute numbers for categorical variables

Minorized race/ethnicities include Indigenous, Arab, Black, Chinese, East Asian, Filipino, Japanese, Jewish, Korean, Latin American/Hispanic, South Asian, Southeast 
Asian, and West Asian. Race/ethnicity and household income data were available for 532 and 534 participants, respectively

HB Holland Bloorview Kids Rehabilitation Hospital, OC Offord Centre, QU Queen’s University, LHS London Health Sciences, SK Hospital for Sick Children, ABAS adaptive 
behavior assessment system, VABS vineland adaptive behavior scales, SCQ social communication questionnaire, CBCL child behaviour checklist, SWAN strengths and 
weaknesses of attention-deficit/hyperactivity disorder symptoms

All (n = 720) autism (n = 547) neurotypical (n = 173)

Site (HB:OC:QU:LHS:SK) 377:183:134:25:1 313:183:25:25:1 64:0:109:0:0

Sex (male:female) 528:192 433:114 95:78

Age at ABAS (years) 11.8 (9.0,14.7) 11.5 (8.8, 14.5) 13.2 (10.1, 15.4)

Age at VABS (years) 11.9 (9.0, 14.8) 11.6 (8.8, 14.7) 13.1 (9.8, 15.4)

Families with multiple children (1: 2: 3) 596:53:6 454:39:5 142:14:1

Race/ethnicity n (%)

Minoritized 152 (30) 110 (32) 42 (25)

White 360 (70) 234 (68) 126 (75)

Household income n (%)

 < $74,999 158 (31) 114 (33) 44 (26)

$75,000–$199,000 219 (43) 133 (39) 86 (51)

 > $200,000 52 (10) 35 (10) 17 (9)

Don’t know 25 (5) 18 (5) 7 (4)

Prefer not to answer 60 (12) 45(13) 15 (9)

ABAS composite score 68.0 (54.0, 90.0)
n = 720

61.0 (48.0, 73.0)
n = 547

105.0 (95.0,117.0)
n = 173

VABS composite score 76.0 (64.0, 92.0)
n = 720

71.0 (62.0, 79.0)
n = 547

104.0 (97.0, 111.0)
n = 173

IQ 99.0 (77.0, 111.0)
n = 666

90.0(69.0, 107.0)
n = 493

108.0 (101.0, 118.0)
n = 173

SCQ 17.0 (7.0, 24.5)
n = 715

21.0 (15.0, 26.0)
n = 545

2.0 (1.0, 3.0)
n = 170

CBCL—Internalizing 60.5 (52.0, 68.0)
n = 693

65.0 (57.0, 70.0)
n = 547

48.0 (39.0, 53.8)
n = 146

CBCL—Externalizing 54.0 (46.0, 63.0)
n = 693

58.0 (50.0, 65.0)
n = 547

41.0 (34.0, 48.0)
n = 146

SWAN—Inattentive 3.0 (0.0, 6.0)
n = 708

5.0 (2.0, 7.0)
n = 539

0.0 (0.0, 0.0)
n = 169

SWAN—Hyperactive/Impulsive 2.0 (0.0, 5.0)
n = 708

3.0 (1.0, 7.0)
n = 539

0.0 (0.0, 0.0)
n = 169
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SD = 1.24. The model accounted for 77% of the vari-
ability in VABS scores (adjusted R-squared). To examine 
the effect of family nesting, we compared the perfor-
mance of the linear regression model with and without 
accounting for family nesting for set 2. No significant 
differences were found (difference = 0.00, CI = (− 0.04, 
0.04), t = − 0.03, df = 19, p = 1.0). Additionally, we ran 

the models on a subset of participants that included one, 
randomly chosen child from each family. The results of 
these exploratory analyses are included in Supplementary 
Table 3.

As an exploratory analysis, we ran three additional lin-
ear models including interactions terms with age, diag-
nosis, and sex. The MAE results over 10 folds of cross 

Fig. 1  A Association between VABS and ABAS composite scores, with linear regression lines fitted individually for each group; B association 
of the VABS-ABAS difference with age by diagnosis, with linear regression lines fitted individually for each group; C histograms of the VABS-ABAS 
difference demonstrating a diagnosis effect; D VABS-ABAS difference by diagnosis and sex. No significant effect of sex revealed
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validation results were not significantly different from 
the base model (age interaction: Wilcoxon signed rank 
test; Z = 0, p = 1.0, estimated median difference: 0.00, 95% 
CI = (-0.59,0.73); diagnosis interaction: Wilcoxon signed 
rank test; Z = -0.19, p = 1.0, estimated median difference: 
− 0.12, 95% CI = (− 0.82,0.55); sex interaction: Wilcoxon 
signed rank test; Z = − 0.19, p = 1.0, estimated median 
difference: -0.07, 95% CI = (− 0.70, 0.70)). The adjusted 
R2 for the models were 0.776 (base model), 0.776 (age 
interaction), 0.781 (diagnosis interaction), 0.776 (sex 
interaction).

Further, we ran the models for prediction of the VABS 
subdomains of socialization, practical, and conceptual, 
using the respective ABAS subdomain score and age, sex, 
and diagnosis as covariates. The results are presented in 
Supplementary Table 4.

Feature importance values for sets 2–4, averaged over 
10 cross-validation folds, are provided in Fig. 2. Across all 
feature sets, the largest importance values corresponded 
to the ABAS composite score, diagnosis, and age. Among 
the ABAS domain scores and phenotypic features, ABAS 
communication and IQ contributed the most to the 
model.

Correlates of prediction error
There was no statistically significant effect of diagnosis, 
sex, age, or site on the residuals.

Discussion
Data harmonization is a key challenge for data shar-
ing across multiple sites and studies. In this paper, 
we reported the results of a demonstration pro-
ject, aiming to harmonize scores on two measures of 

adaptive functioning. To this end, we used computational 
approaches to predict scores on a clinician/researcher-
administered measure of adaptive function (VABS) from 
scores on a parent-reported measure (ABAS).

Overall, our results supported the feasibility of harmo-
nization, although the prediction error was larger than 
the minimum clinically significant difference in the VABS 
(2–3.75 points for the VABS (Chatham et  al., 2018)). 
In particular, we achieved median absolute prediction 
errors of 4.96 ± 0.34 and 4.80 ± 0.47 points for the full and 
autism-only samples, respectively, using ridge regression. 
The should be interpreted in the context of the estimated 
measurement error for the two instruments (VABS: 
2.3–3.8; ABAS: 1.5–2.6) [11, 19]) and the minimum clini-
cally significant difference of 2–3.75 points for the VABS 
(Chatham et al., 2018). In particular, our achieved accu-
racy was larger than both by just over one point. The 
computational methods examined in this study provided 
similar prediction accuracies, consistent with the lin-
ear nature of the association between VABS and ABAS 
[7]. As such, we recommend the use of linear regression 
given its relative simplicity. From a clinical perspective, 
we have demonstrated the feasibility of predicting VABS 
scores relatively accurately from ABAS scores. Given that 
the ABAS is a parent-reported measure, this may offer 
advantages in terms of scalability and cost depending 
on the setting. These results are also encouraging in the 
context of data harmonization when ABAS or VABS have 
been used across different datasets.

We investigated the correlates of the estimation 
error to determine subgroups in our sample for whom 
the VABS-ABAS conversion may be particularly accu-
rate or erroneous. We found that participant-specific 

Table 2  Median absolute error for the computational models, quantifying the magnitude of the residuals for each model

Median error across all participants was reported due to the skewed nature of the error distribution. The values provided are median (Q1, Q3) over the 10 folds of 
cross-validation

ABAS adaptive behavior assessment system, GAC​ general adaptive composite
a Error significantly higher than sets 3 and 4
b Error significantly higher than set 4
c Error significantly higher than sets 2–4

Features Linear regression Ridge LASSO ElasticNet Random forest AdaBoost

All Set 1: ABAS GAC​ 6.49 ± 0.95a 6.49 ± 0.95a 6.50 ± 0.93a 6.50 ± 0.94a 6.91 ± 1.39b 6.48 ± 0.94a

Set 2: ABAS GAC + demographics 5.57 ± 0.63b 5.54 ± 0.63 6.20 ± 0.74a 5.95 ± 0.81b 6.41 ± 1.23 5.65 ± 0.67

Set 3: ABAS GAC + demographics + ABAS raw 5.24 ± 0.71 5.24 ± 0.71 5.23 ± 0.69 5.68 ± 0.49 5.94 ± 0.63 5.30 ± 0.70

Set 4: ABAS GAC + demographics + ABAS 
raw + phenotype

4.97 ± 0.36 4.96 ± 0.34 5.11 ± 0.46 5.16 ± 0.68 5.36 ± 1.26 5.05 ± 0.55

Autism only Set 1: ABAS GAC​ 5.80 ± 2.03 5.80 ± 2.03 5.80 ± 2.03 5.78 ± 2.03 6.83 ± 1.19a 5.77 ± 1.79

Set 2: ABAS GAC + demographics 5.36 ± 0.50 5.36 ± 0.51 5.42 ± 0.71 5.30 ± 0.59 5.65 ± 1.10 5.44 ± 0.73

Set 3: ABAS GAC + demographics + ABAS raw 5.11 ± 0.33 5.11 ± 0.34 4.98 ± 0.42 4.94 ± 0.41 5.51 ± 0.73 5.11 ± 0.28

Set 4: ABAS GAC + demographics + ABAS 
raw + phenotype

4.76 ± 0.51 4.74 ± 0.50 4.73 ± 1.31 4.75 ± 1.06 5.48 ± 1.10 4.64 ± 0.97
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features available in our dataset, including age, sex, 
diagnosis, or any of the symptom scores were not sig-
nificant sources of prediction error. Although diagnosis 
was not a significant predictor of regression error, the 
results of the present study replicated the systematic 

differences between ABAS and VABS scores in the 
autistic, but not neurotypical, subgroups observed in 
previous studies [7, 15]. In the context of harmoniza-
tion, this suggests that conversion of scores should 
occur on population-specific models.

Fig. 2  Feature importance values for linear regression averaged over 10 cross validation folds for A feature set 2, B features set 3, and C feature set 
4. Bars represent standard deviation



Page 9 of 11Smith et al. Molecular Autism           (2024) 15:51 	

Measure-specific features may also contribute to dif-
ferences between the VABS and the ABAS. These, for 
example, may include differences in the administration 
method for each instrument (VABS clinical interview 
versus ABAS parent completed questionnaire measure) 
and the phrasing of the questions.

In this study, we examined four sets of variables for 
prediction of VABS scores, each set containing addi-
tional features to aid the prediction task. The first set 
contained only the ABAS composite whereas the sec-
ond second set consisted of the ABAS composite scores, 
age, sex, and diagnosis. The third set further included 
raw ABAS scores to account for ceiling and floor effects. 
Finally, the fourth set additionally included phenotypic 
variables characterizing core and co-occurring features 
(autism-like features: SCQ; ADHD-like features: SWAN; 
IQ; internalizing and externalizing behaviours: CBCL). 
While set 4 led to the lowest prediction error, the differ-
ences between the results obtained from the four feature 
sets were smaller than a clinically meaningful difference 
in the VABS score. As the phenotypic measures may 
not be available in all datasets, we suggest that a model 
trained on a feature set consisting of participant demo-
graphic variables and ABAS composite and raw scores 
may be sufficient for most applications.

We quantified the contribution of each variable in 
the feature set to the predictive model using permuta-
tion feature importance. When considering only the 
ABAS composite, diagnosis, age, and sex (feature set 2), 
the ABAS composite was the most prominent variable 
for prediction of VABS scores for both the pooled and 
autism-only samples. Once ABAS domain scores were 
added to the feature set, diagnosis, age, and the ABAS 
communication raw score additionally contributed to 
the model; However, the ABAS composite remained the 
most prominent contributor in the pooled sample. This 
finding is consistent with previous work which found the 
highest correlation between ABAS and VABS scales to be 
between the composite scores [7]. Interestingly, for the 
autism-only subsample, age and the ABAS communica-
tion domain scores contributed most to the model. In 
our results, age emerged as an important feature in the 
prediction of VABS, especially in the autistic subsample. 
While ABAS and VABS are both age-normed scores, we 
also found a significant negative association between age 
and the VABS-ABAS difference.

Other than IQ, the remaining phenotypic variable did 
not contribute significantly to the final models, further 
confirming that feature set 3 is sufficient for prediction of 
VABS scores in practice. This finding may also reflect the 
high correlation among these variables, with the ABAS 
ABAS composite score likely summarizing the informa-
tion needed for prediction.

Limitations
This study has several strengths, including the large 
sample assessed using both the VABS and ABAS scores. 
Additionally, the deep phenotypic characterization of 
our sample allowed us to investigate the contribution 
of various domains to the VABS-ABAS relation. We did 
not examine the conversion of domain scores across the 
two measures of adaptive functioning and suggest this 
as a future area of investigation.

Conclusion
In this study, we examined the feasibility of mapping 
scores on two measures of adaptive functioning namely, 
the VABS and the ABAS. Our results suggest that a 
linear regression model trained on the ABAS compos-
ite score, the ABAS raw domain scores, and age, sex, 
and diagnosis would provide an acceptable trade-off 
between accuracy, parsimony, and measurement effort/
cost.
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