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Abstract 

Background  Brain signal variability (BSV) is an important understudied aspect of brain function linked to cognitive 
flexibility and adaptive behavior. Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized 
by social communication difficulties and restricted and repetitive behaviors (RRBs). While atypical brain function 
has been identified in individuals with ASD using fMRI task-activation and functional connectivity approaches, little 
is known about age-related relationships with resting-state BSV and repetitive behaviors in ASD.

Methods  We conducted a cross-sectional examination of resting-state BSV and its relationship with age and RRBs 
in a cohort of individuals with Autism Brain Imaging Data Exchange (n = 351) and typically developing (TD) individu-
als (n = 402) aged 5–50 years obtained from the Autism Brain Imaging Data Exchange. RRBs were assessed using 
the Autism Diagnostic Interview-Revised (ADI-RRB) scale. BSV was quantified using the root-mean-square succes-
sive difference (rMSSD) of the resting-state fMRI time series. We examined categorical group differences in rMSSD 
between ASD and TD groups, controlling for both linear and quadratic age. To identify dimensional relationships 
between age, group, and rMSSD, we utilized interaction regressors for group x age and group x quadratic age. Within 
a subset of individuals with ASD (269 subjects), we explored the relationship between rMSSD and ADI-RRB scores, 
both with and without age considerations. The relationship between rMSSD and ADI-RRB scores was further ana-
lyzed while accounting for linear and quadratic age. Additionally, we investigated the relationship between BSV, age, 
and ADI-RRB scores using interaction regressors for age x RRB and quadratic age x RRB.

Results  When controlling for linear age effects, we observed significant group differences between individuals 
with ASD and TD individuals in the default-mode network (DMN) and visual network, with decreased BSV in ASD. 
Similarly, controlling for quadratic age effects revealed significant group differences in the DMN and visual network. 
In both cases, individuals with ASD showed decreased BSV compared with TD individuals in these brain regions. The 
group × age interaction demonstrated significant group differences in the DMN, and visual network brain areas, indi-
cating that rMSSD was greater in older individuals compared with younger individuals in the ASD group, while rMSSD 
was greater in younger individuals compared with older individuals in the TD group. The group × quadratic age 
interaction showed significant differences in the brain regions included in DMN, with an inverted U-shaped rMSSD-
age relationship in ASD (higher rMSSD in younger individuals that slightly increased into middle age before decreas-
ing) and a U-shaped rMSSD-age relationship in TD (higher rMSSD in younger and older individuals compared 
with middle-aged individuals). When controlling for linear and quadratic age effects, we found a significant positive 
association between rMSSD and ADI-RRB scores in brain regions within the DMN, salience, and visual network. While 
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no significant results were observed for the linear age × RRB interaction, a significant association between quad-
ratic age and ADI-RRB scores emerged in the DMN, dorsal attention network, and sensorimotor network. Individuals 
with high ADI-RRB scores exhibited an inverted U-shaped relationship between rMSSD and age, with lower rMSSD 
levels observed in both younger and older individuals, and higher rMSSD in middle-aged individuals. Those with mid-
range ADI-RRB scores displayed a weak inverted U-shaped rMSSD-age association. In contrast, individuals with low 
ADI-RRB scores showed a U-shaped rMSSD-age association, with higher rMSSD levels in younger and older individu-
als, but a lower rMSSD in middle-aged individuals.

Conclusion  These findings highlight age-related atypical BSV patterns in ASD and their association with repetitive 
behaviors, contributing to the growing literature on understanding alterations in functional brain maturation in ASD.

Keywords  Age, ASD, Brain–behavior relationships, Resting-state fMRI, Mean square successive difference

Introduction
Once regarded as noise, brain signal variability (BSV) 
has emerged as a crucial component of optimal brain 
function [1]. For instance, the ’Bayes optimal theory’ 
suggests that a neuronal population chooses an appro-
priate response to a specific stimulus from a wide range 
of potential responses. This response variability enables 
flexible neural firing, which in turn allows neural net-
works to adapt effectively to different circumstances [2]. 
Previous fMRI research has shown that BSV is associ-
ated with task performance [3], lifespan stage [4], and 
clinical symptoms in neurodevelopmental disorders [5]. 
However, little work has examined how BSV is related to 
age and behavioral symptom severity in autism spectrum 
disorder (ASD) using large samples.

Recently, the analysis of BSV has emerged as a valuable 
tool for understanding age-related functional brain dif-
ferences. Using fMRI, [6] one study found that during fix-
ation periods of a task, the standard deviation (SD) of the 
blood-oxygen level-dependent (BOLD) time series was 
higher in younger adults compared with older adults. It 
has also been shown that BOLD SD is higher in individu-
als who perform better on cognitive tasks [7], is sensitive 
to parametric modulations in task difficulty [8], is sensi-
tive to amphetamine administration during task per-
formance [9], and is higher for external compared with 
internal or intrinsic states of cognitive processing [10]. 
BSV has also been investigated using the mean square 
successive difference (MSSD) of the BOLD signal and has 
been shown to index financial risk-taking across age [11]. 
BSV computed with MSSD shows reductions across most 
brain regions over the lifespan, with age-related increases 
noted only within the insula and ventral temporal cortex 
[4]. Our group recently found that associations between 
BSV and executive function change as a function of age 
[12]. These studies demonstrate how the analysis of BSV 
can offer a valuable perspective on the links between 
brain function, cognitive function, and age.

While several studies have explored the association 
between BSV and neurodevelopmental [13], and psychi-
atric disorders [14], only one prior study has examined 
BSV in children and adolescents with and without ASD 
[5]. Using a categorical analysis on 20 subjects with ASD 
and 17 typically developing subjects, they found no cat-
egorical group differences in MSSD between children 
and adolescents (aged 8–18 years old) with and without 
an ASD diagnosis. However, a dimensional approach 
revealed positive correlations between BSV and age in 
all participants, and negative correlations between BSV 
and the severity of ASD behaviors (repetitive behaviors, 
social responsiveness) in frontal, parietal, and occipital 
brain areas among others. This initial study demonstrates 
how BSV may be used to characterize symptom severity 
in individuals with ASD. However, no study has yet inves-
tigated the relationships between BSV, age, and repetitive 
behaviors in ASD using the large sample sizes available 
from the Autism Brain Imaging Data Exchange (ABIDE) 
I and II databases. Examining age-related BSV patterns 
and how they are associated with RRBs in ASD within 
such a large sample size will help to provide insights into 
these important developmental relationships.

The current study used resting-state fMRI scans from 
the ABIDE I and II databases [5, 6] to conduct two main 
analyses to examine developmental patterns of BSV in 
individuals with ASD and TD individuals. The first analy-
sis examined how BSV (quantified using the root mean 
square MSSD (rMSSD)) may differentiate between indi-
viduals with ASD (n = 351) and TD individuals (n = 402) 
(5 to 50  years of age) with and without considering the 
influence of age. The second analysis examined how BSV 
is related to RRB symptom severity (measured using the 
ADI-RRB scale) across development with and without 
considering the influence of age on a subset of individuals 
with ASD (9 sites; 269 subjects). Based on previous lit-
erature examining BSV in neurodevelopmental [13] and 
psychiatric disorders [14, 15], we expected to observe 
age-related atypical BSV in ASD. Additionally, we 
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anticipated that age would play a critical role in modulat-
ing the relationship between BSV and repetitive behavior 
in individuals with ASD.

Methods
Participants
Publicly available resting-state fMRI data was down-
loaded from the ABIDE database (ABIDE-I, ABIDE-
II; https://fcon_1000.projects.nitrc.org/indi/abide); 
[16, 17] consisting of 753 participants (351 ASD; 308 
male/43 female) and 402 TD; 316 male/86 female) 
across nine sites—Eidgenössische Technische Hoch-
schule Zurich (ETH), Georgetown University (GU), 
New York University (NYU) Langone Medical Center, 
San Diego State University (SDSU), Trinity Center for 
Health Sciences (TCD), University of California Davis 
(UCD), University of Michigan (UM), University of 
Utah School of Medicine (USM), and Yale Child Study 
Center (Yale). To minimize between-site differences, 

we selected sites that used an eyes-open resting-state 
protocol (at ETH, NYU, SDSU, TCD, and UM, subjects 
were required to focus on a fixation cross, while sub-
jects at the other sites were instructed to mind-wan-
der). Additionally, all sites used a TR of 2  s (Table  1; 
subject IDs are listed in Additional file  2). This crite-
rion is crucial as rMSSD is influenced by the acquisi-
tion rate; higher TRs yield larger rMSSD values due 
to the increased time between successive BOLD sig-
nal volumes [4]. ASD and TD groups were matched 
for age, MRI head motion, and IQ within each site 
(p-value > 0.07). During preprocessing, all datasets were 
standardized to either 6  min or 5  min, depending on 
the scan run time. If the scan run time exceeded 6 min, 
it was truncated to 6 min. If the scan run time was less 
than 6  min, it was truncated to 5  min. The first five 
volumes (10  s) were removed to allow the MRI signal 
to reach equilibrium. Out of the nine sites, six (ETH, 
NYU, SDSU, UM, USM, Yale) had a resting-state scan 

Table 1  Demographics

a Two-sample t-test, SD Standard deviation, ETH Eidgenössische Technische Hochschule, GU Georgetown University, NYU New York University Langone Medical Center, 
SDSU San Diego State University, TCD Trinity Center for Health Sciences, UCD University of California Davis, UM University of Michigan, USM University of Utah School 
of Medicine

Site ASD (n) TD
(n)

Age Range
(mean ± SD)

pa Average FD
Range (mean ± SD)

pa

ASD TD ASD TD

ABIDE I

NYU 63 86 7–39
(15 ± 7)

6–31
(15 ± 5)

0.64 0.06–0.23 (0.13 ± 0.04) 0.05–0.31 (0.12 ± 0.05) 0.27

SDSU 12 22 12–17
(15 ± 1)

8–16
(14 ± 1)

0.21 0.04–0.22 (0.11 ± 0.06) 0.06–0.25 (0.13 ± 0.06) 0.29

UM 50 67 9–18
(13 ± 2)

8–28
(14 ± 3)

0.11 0.07–0.39 (0.18 ± 0.08) 0.08–0.41 (0.17 ± 0.08) 0.35

USM 41 35 11–50
(23 ± 8)

9–39
(21 ± 7)

0.41 0.05–0.30 (0.17 ± 0.07) 0.06–0.35 (0.16 ± 0.06) 0.44

TCD 23 24 12–25
(17 ± 3)

12–25
(17 ± 3)

0.84 0.12–0.33 (0.20 ± 0.06) 0.11–0.40 (0.17 ± 0.06) 0.07

YALE 25 27 7–17
(13 ± 3)

8–17
(12 ± 2)

0.81 0.07–0.27 (0.17 ± 0.06) 0.06–0.35 (0.15 ± 0.07) 0.35

ABIDE II

ETH 8 23 14–27
(21 ± 3)

13–30
(23 ± 4)

0.14 0.10–0.45 (0.22 ± 0.12) 0.08–0.27 (0.17 ± 0.05) 0.15

GU 42 51 8–13
(11 ± 1)

8–13
(10 ± 1)

0.07 0.06–0.45 (0.21 ± 0.09) 0.07–0.44 (0.18 ± 0.08) 0.12

NYU 33 19 5–34
(10 ± 6)

5–12
(8 ± 2)

0.39 0.09–0.29 (0.17 ± 0.06) 0.09–0.38 (0.18 ± 0.08) 0.77

SDSU 32 25 7–18
(13 ± 3)

8–17
(13 ± 3)

0.82 0.04–0.41 (0.12 ± 0.08) 0.06–0.36 (0.14 ± 0.07) 0.31

UCD 15 14 12–17
(14 ± 1)

12–17
(14 ± 1)

0.63 0.07–0.37 (0.17 ± 0.08) 0.08–0.35 (0.16 ± 0.09) 0.76

USM 7 9 9–38
(21 ± 9)

11–36
(22 ± 8)

0.84 0.09–0.42 (0.22 ± 0.11) 0.06–0.21 (0.13 ± 0.05) 0.40

Total 351 402 5–50
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time of six minutes, while the remaining three (GU, 
Trinity, UCD) had a scan time of five minutes. Data 
collection and sharing procedures were approved by 
the review board at each institution. Written informed 
consent and/or informed assent were obtained from 
each participant and their parents, where applicable. 
Individuals with poor functional or structural scans or 
average framewise displacement (FD) > 0.5  mm were 
eliminated from the analysis [18].

At each site, inclusion as an individual with ASD 
required a diagnosis by a clinician using the following cri-
teria: Diagnostic and Statistical Manual of Mental Disor-
ders (DSM) versions four text revision (DSM-IV-TR) and 
five (DSM-V); Autism Diagnostic Observation Schedule 
(ADOS) general (ADOS-G) or version two (ADOS-2); 
Autism Diagnostic Interview-Revised (ADI-R). Each site 
conducted separate procedures concerning which cri-
teria were administered. A total of 66 participants diag-
nosed with ASD were using psychotropic medications.

Data Preprocessing. Resting-state fMRI data were pre-
processed as in our previous BSV study [4] using the 
Data Processing Assistant for Resting-State fMRI toolbox 
(DPARSF advanced edition v4.1_160415, http://​rfmri.​
org/​DPARSF) [19], along with FSL and AFNI functions. 
The initial five volumes were discarded to ensure steady 
signal stabilization. On the remaining images, we applied 
despiking (AFNI’s 3dDespike), realignment (DPARSF-A), 
normalization to MNI space (DPARSF-A), and cluster-
based smoothing (AFNI’s 3dBlurToFWHM).

An ICA-FIX classifier [20] was individually trained for 
each site. For the GU, NYU, and USM sites, 20 subjects 
(comprising 10 TD and 10 ASD) were used for training 
[4, 21]. For the SDSU and UM sites, 18 subjects (9 TD 
and 9 ASD each) were used. For the ETH, Trinity, UCD, 
and Yale sites we used 16 subjects (8 TD and 8 ASD) at 
each site for training. These subjects were randomly cho-
sen across a range of low to high head motion and across 
younger and older individuals. Noise components con-
sisting of white matter, scanner noise, head motion, car-
diac, and respiration artifacts were identified using visual 
inspection of ICA spatial maps, power frequency spectra, 
and time-series appearance. The classifications were then 
fed into ICA-FIX and used to identify and regress noise 
components from the remaining subjects within each 
site. Prior studies have demonstrated that ICA denoising 
effectively eliminates non-neuronal sources of variabil-
ity while increasing effect sizes in variability analyses [6], 
and effectively mitigates cross-site differences in fMRI 
analyses [22]. Finally, 24 motion parameters (6 head 
motion parameters, 6 head motion parameters one time 
point before, and the 12 corresponding squared items) 

were regressed from the data before linear detrending 
and band-pass filtering (0.01–0.1  Hz) (DPARSF-A). To 
address scanner differences, we applied ComBat har-
monization using a MATLAB-based implementation of 
the NeuroCombat [23] to correct for effects on the BSV 
measure across different scanner sites while preserving 
biological variability.

Calculation of Voxel-wise rMSSD: BOLD signal vari-
ability was estimated using rMSSD, which considers the 
temporal continuity of resting-state fMRI time-series 
and quantifies the average distance in signal amplitude 
between successive time points [24]. Time-series were 
normalized to z-statistics before calculating voxel-wise 
rMSSD for each subject using custom MATLAB scripts 
[4, 11]. rMSSD was calculated for each time series by 
subtracting the value at time point t + 1 from the value at 
time point t, squaring the result to account for negative 
values, then calculating the square root of the average 
of all differences [24]. Associations between rMSSD, age 
and RRB scores were calculated in FSL using ordinary 
least squares (OLS) regression with FD was included as a 
nuisance regressor.

rMSSD differences between ASD and TD
All analyses were conducted using subject-level whole-
brain voxel-wise rMSSD spatial maps as the dependent 
variable (DV) using OLS regression in FSL. Categori-
cal group differences in rMSSD between ASD and TD 
groups were assessed controlling for linear (Model 1) 
and quadratic age (Model 2). Dimensional relation-
ships between age, group, and rMSSD were identified 
using group × age (Model 3) and group × quadratic age 
(Model 4) interaction regressors. There was no signifi-
cant correlation between FD and age in the ASD group 
(rho = − 0.09, p = 0.06), and a weak negative relationship 
in the TD group (rho = −  0.15, p = 0.002). Head motion 
was accounted for as a nuisance regressor in all analy-
ses. All regression models used both liberal and strin-
gent thresholds (z > 2.3 and 3.3, voxel-wise uncorrected) 
to ensure a balance between spatial specificity, sensitiv-
ity, and repeatability [25]. Additionally, cluster-wise cor-
rection was applied using Gaussian Random Field (GRF) 
theory (p < 0.05, corrected) [26].

Model 1:

rMSSD = β0+ β1(Group)+ β
(

Age
)

+ β3(FD)+ ǫ

http://rfmri.org/DPARSF
http://rfmri.org/DPARSF
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Model 2:

Model 3:

Model 4:

rMSSD and ADI‑RRB scores in ASD
The relationship between rMSSD and ADI-RRB scores 
was explored within a subset of individuals with ASD (9 
sites; 269 subjects) with and without the consideration 
of age. The relationship between rMSSD and ADI-RRB 
scores was examined while controlling for age (Model 5) 
and quadratic age (Model 6). The relationship between 
BSV, age, and ADI-RRB scores was examined using the age 
x RRB (Model 7) and the quadratic age x RRB (Model 8) 
interaction regressors. There was no significant correla-
tion between FD and ADI-RRB scores (rho = 0.01, p = 0.7). 
FD was included as a nuisance regressor in all models. The 

rMSSD = β0+ β1(Group)+ β2
(

Age
)

+ β3
(

Quadratic Age
)

+ β4(FD)+ ǫ

rMSSD = β0+ β1(Group)+ β2
(

Age
)

+ β3
(

Group× Age
)

+ β4(FD)+ ǫ

rMSSD = β0+ β1(Group)+ β2
(

Age
)

+ β3
(

Quadratic Age
)

+ β4
(

Group× Age
)

+ β5
(

Group× Quadratic Age
)

+ β6(FD)+ ǫ

scatterplots signifying the age × RRB interaction catego-
rized the subjects into three groups based on their ADI-
RRB scores (low, mid, high) using equal binning intervals 
for visualization purposes only (Fig. 3D).

Model 5:

Model 6:

Model 7:

Model 8:

rMSSD = β0+ β1(Group)+ β2
(

Age
)

+ β3(RRB)+ β4(FD)+ ǫ

rMSSD = β0+ β1(Group)+ β2
(

Age
)

+ β3
(

Quadratic Age
)

+ β4(RRB)+ β5(FD)+ ǫ

rMSSD = β0+ β1(Group)+ β2
(

Age
)

+ β3(RRB)+ β4
(

Age × RRB
)

+ β5(FD)+ ǫ

rMSSD = β0+ β1(Group)+ β2
(

Age
)

+ β3
(

Quadratic Age
)

+ β4(RRB)+ β5
(

Age × RRB
)

+ β6
(

Quadratic Age × RRB
)

+ β5(FD)+ ǫ

Fig. 1  A Results from regression Model 1 where individuals with ASD show significantly lower rMSSD than TD individuals when controlling for age 
(p < 0.05 cluster-wise corrected). B Results from regression Model 2 where individuals with ASD show significantly lower rMSSD than TD individuals 
when controlling for quadratic age (p < 0.05 cluster-wise corrected). rMSSD root mean-square successive difference, TD typically developing, ASD 
autism spectrum disorder, TPJ temporal-parietal junction, STG superior temporal gyrus, MTG medial temporal gyrus
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Reproducibility analysis
To examine how IQ, gender, and handedness may influ-
ence the results, post-hoc analyses were conducted on 
a subset of individuals with available demographics as 
nuisance covariates across models 1–4 (ASD: n = 336; 
TD: n = 389) and across models 5–8 (ASD: n = 256) to 
reproduce significant effects found in the main analysis. 
Demographics for IQ and gender are available in Addi-
tional Table 1.

Results
rMSSD differences between ASD and TD
When controlling for linear age effects (Model 1), we 
observed significant group differences between individ-
uals with ASD and TD individuals in the temporal-pari-
etal junction (TPJ) (voxel-wise uncorrected threshold 
(z > 3.3)) and middle temporal gyrus (MTG), superior 
temporal gyrus (STG), cuneus cortex, and lingual gyrus 
(voxel-wise uncorrected thresholds (z > 2.3)) (Fig. 1A).

When controlling for quadratic age effects (Model 2), 
there were similar significant group differences in the 
TPJ, cuneus cortex and lingual gyrus. However, these 
differences were observed at a more lenient voxel-wise 
uncorrected threshold (z > 2.3) (Fig. 1B). In both cases, 
individuals with ASD exhibited decreased BSV com-
pared with TD individuals in these brain regions.

The group x age interaction (Model 3) showed signifi-
cant group differences in the posterior cingulate cortex 
(PCC), parahippocampal gyrus (PHG), lingual gyrus, 
and occipital pole (z > 2.3 voxel-wise uncorrected). These 
interactions showed that rMSSD was greater in older 
individuals compared with younger individuals in the 
ASD group, while rMSSD was greater in younger indi-
viduals compared with older individuals in the TD group 
(Fig. 2C, D).

The group x quadratic age interaction (Model 4) 
showed significant group differences in the medial pre-
frontal cortex (mPFC) (z > 3.3 voxel-wise uncorrected) 
(Fig. 2B). These interactions showed that the ASD group 
had an inverted U-shaped rMSSD-age relationship where 

Fig. 2  A Results from regression Model 3 where a Group x Linear age interaction shows a positive linear relationship between rMSSD and age 
for individuals with ASD while TD individuals show a negative linear relationship between rMSSD and age in the PCC, PHG, lingual gyrus, 
and occipital cortex (C, D). B Results from regression Model 4 where a Group x Quadratic age interaction shows an inverted U-shaped relationship 
between rMSSD and age for individuals with ASD while TD individuals show a U-shaped relationship between rMSSD and age in the medial 
prefrontal cortex (E). rMSSD root mean-square successive difference, TD typically developing, ASD autism spectrum disorder, PCC posterior cingulate 
cortex, pPHG posterior Para-hippocampal gyrus, vmPFC ventro-medial prefrontal cortex
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younger individuals had low rMSSD that increased 
slightly into middle age before dropping down in older 
age, while the TD group had a U-shaped rMSSD-age rela-
tionship where younger and older individual had higher 
rMSSD than middle-aged individuals (Fig. 2E).

rMSSD and ADI‑RRB scores in ASD
When controlling for linear (Model 5) (Fig.  3A) and 
quadratic age (Model 6) (Fig. 3B) effects, we found signif-
icant positive relationship between rMSSD and ADI-RRB 
scores. This pattern was evident in clusters located in the 
PCC, inferior parietal lobule (IPL), precuneus (Pcun), 
inferior temporal gyrus (ITG), fusiform gyrus (FuG), and 
cuneus cortex at a voxel-wise uncorrected threshold of 

z > 2.3. A more stringent threshold (z > 3.3) additionally 
highlighted the FuG as a significant region.

While no significant age x RRB interaction was 
observed (Model 7), a quadratic age x RRB interaction 
(Model 8) was identified at a more lenient threshold 
(voxel-wise uncorrected, z > 2.3) in the precentral gyrus 
(PrCG), postcentral gyrus (PoCG), STG, and MTG 
region (Fig. 3C). Individuals with high ADI-RRB scores 
exhibited an inverted U-shaped rMSSD-age associa-
tion, with low rMSSD levels observed in both younger 
and older individuals, and high rMSSD levels in mid-
dle-aged individuals. Those with mid-range ADI-RRB 
scores displayed a weak inverted U-shaped rMSSD-age 
association. In contrast, individuals with low ADI-RRB 
scores showed a U-shaped rMSSD-age association, 

Fig. 3  A, B Results from regression Model 5 and 6 showing brain areas showing a significant positive relationship between rMSSD and ADI-RRB 
scores while controlling linear (A) and quadratic age effects (B). C Results from regression Model 8 showing a significant quadratic Age x 
ADI-RRB interaction effect in the PrCG, PoCG, STG, and MTG (p < 0.05 cluster-wise corrected). D Specifically, individuals with high ADI-RRB scores 
showed an inverted U-shaped relationship between rMSSD and age while individuals with low ADI-RRB scores exhibit a U-shaped relationship 
between rMSSD and age. Individuals with mid-range ADI-RRB scores demonstrated a weak inverted-u shaped trend in the relationship 
between rMSSD and age. ADI-RRB repetitive restricted behavior indexed by Autism Diagnostic Interview, rMSSD root mean-square successive 
difference, TD typically developing, ASD autism spectrum disorder, Pcun precuneus, FuG fusiform gyrus, PCC posterior cingulate cortex, IPL inferior 
parietal lobule, ITG inferior temporal gyrus, PoCG postcentral gyrus, PrCG precentral gyrus, STG superior temporal gyrus, MTG middle temporal gyrus
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with high rMSSD levels in younger and older individu-
als, but a low rMSSD levels in middle-aged individuals 
(Fig. 3D). These results show that relationships between 
rMSSD, age, and ADI-RRB scores may follow quadratic 
patterns in sensorimotor and temporal cortices. The 
scatterplots signifying the age x RRB interaction cat-
egorized the subjects into three groups based on their 
ADI-RRB scores (low, mid, high) using equal binning 
intervals for visualization purposes only (Fig. 3D).

Reproducibility analysis
The reproducibility analysis conducted using the addi-
tional nuisance covariates of handedness, IQ, and gender 
yielded significant clusters of rMSSD values ASD < TD 
for Models 1 and 2, specifically in the TPJ, lingual gyrus, 
cuneus, STG, and MTG with an additional cluster was 
observed in the occipital cortex (Additional Fig. 1A and 
B). Model 3, run with the additional nuisance covari-
ates, yielded significant differences between ASD and 
TD groups, with rMSSD values being higher in ASD 
compared to TD in areas such as the PCC, PHG, lingual 
gyrus, and occipital cortex, as observed in the original 
analysis. It also revealed additional significant clusters 
in the right Pcun (Additional Fig. 1C). Similarly, Model 4 
run with additional covariates revealed significant group 
x quadratic age effects in clusters where rMSSD values 
were lower in ASD compared to TD (ASD < TD), specifi-
cally in the mPFC, consistent with the primary analysis. 
Additionally, significant clusters were observed in the 
PCC and orbitofrontal cortex (Additional Fig.  1D). This 
indicates that, after controlling for IQ, handedness, and 
gender, the categorical group differences and the age 
× group and quadratic age x group interactions remain 
largely consistent.

Models 5 and 6 run with the additional covariates 
yielded significant clusters indicating positive relation-
ship between rMSSD and ADI-RRB scores in areas such 
as PCC, Pcun, IPL, FuG, ITG, and cuneus cortex as in 
primary analysis. Model 7 was not examined as there 
were no significant results in the main analysis. Finally, 
Model 8 run with additional covariates revealed signifi-
cant effects indicating a quadratic relationship between 
rMSSD and the age × ADI-RRB interaction term, spe-
cifically in the left MTG, left ITG, right PoCG, and right 
PrCG, consistent with the primary analysis. However, the 
post hoc analysis also identified new significant clusters 
in the right MTG and right ITG. Overall, these results 
suggest that the relationship between rMSSD and ADI-
RRB, after controlling for age and the quadratic age × 
ADI-RRB interaction, remains largely consistent even 
when accounting for IQ, handedness, and gender.

Discussion
Brain signal variability is thought to be crucial for optimal 
cognitive and behavioral function [27] and is theorized 
to support the dynamic interplay between integrated 
and segregated brain states, which allows different brain 
regions to synchronize or operate independently depend-
ing on the specific task requirements [27]. Previous stud-
ies have focused on BOLD fMRI variability within the 
context of aging [6, 7, 28] and neurodevelopmental dis-
orders [5, 13]. The current study investigated the age-
related relationship between resting-state BOLD fMRI 
variability and repetitive behaviors in ASD in a large 
publicly available sample for the first time. The results 
show that rMSSD can differentiate between ASD and TD 
individuals using approaches that identify group differ-
ences with and without consideration of age. The results 
also show that restrictive and repetitive symptom sever-
ity in ASD as measured by the ADI-RRB scale is associ-
ated with rMSSD in both a linear and quadratic manner 
with age. Finally, controlling for demographics such as 
IQ, handedness, and gender in a subset of individuals did 
not affect the relationship between rMSSD and ADI-RRB 
scores. It also increased the spatial extent of categorical 
group differences, age x group, quadratic age x group 
effects, and the quadratic age x RRB interaction. Taken 
together, these results show how rMSSD may be used to 
identify differences in BSV between individuals with ASD 
and TD and how rMSSD may be used to identify asso-
ciations with restrictive and repetitive behaviors in indi-
viduals with ASD.

Group differences in brain signal variability
This pattern of BSV in TD individuals generally aligns 
with earlier investigations reporting a general linear 
decrease in BSV across the cortex in TD individuals 
across the lifespan [4]. This general decrease is thought 
to be associated with maturational processes that occur 
with the degradation of processing speed and cognitive 
abilities across old age [6, 9, 29]. However, caution should 
also be used when comparing the results of the current 
study against previous research, as the age ranges differ 
considerably. Still, it is unclear why individuals with ASD 
show the opposite pattern, where BSV increases across 
development. This divergence may be related to a num-
ber of factors such as differences in brain maturational 
processes in ASD compared with TD. For example, indi-
viduals with ASD show early developmental brain over-
growth compared with TD individuals [30]. Post-mortem 
examinations of brains from individuals with ASD show 
age-related decreases in Gamma-aminobutyric (GABA) 
acid associated with immune and inflammation 
responses [31]. Such findings have led to speculation that 
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early neurobiological differences present in ASD from 
early age (e.g., 2  years old) results in a cascading effect 
where typical brain development is affected [32]. These 
early developmental deviations in individuals with ASD 
from TD individuals may contribute to the differences in 
BSV found in the current study.

Previously, Easson and McIntosh (2019) found no 
group differences between ASD and TD individuals and a 
positive relationship between MSSD and age across both 
ASD and TD individuals. In contrast, we found reduced 
BSV in individuals with ASD compared with TD indi-
viduals when controlling for age and quadratic age in 
temporal and occipital cortices including the TPJ, MTG, 
STG, cuneus cortex, and lingual gyrus. We also demon-
strate an age × group interaction where there was a posi-
tive association between rMSSD and age in the lingual 
gyrus, PCC, PHG, and occipital cortex in individuals 
with ASD while the TD group showed a negative associa-
tion between rMSSD and age. There was also a quadratic 
age × group interaction, where individuals with ASD 
exhibited a slight increase in rMSSD during childhood 
and older adulthood, followed by a significant drop in 
middle adulthood in the prefrontal cortex and paracingu-
late gyrus, whereas TD individuals exhibit higher rMSSD 
in childhood and older adulthood, and lower rMSSD for 
middle-aged individuals.

The divergence of our results from Easson and McI-
ntosh (2019) could arise from a number of differences 
between the two studies such as the sample size, age 
range, and the use of a multivariate (e.g., Easson and 
McIntosh 2019) versus univariate approach (e.g., cur-
rent study). Future research should attempt to clarify 
how such methodological differences may influence BSV 
when comparing ASD and TD, when exploring how age 
impacts such clinical differences, and how ASD symptom 
severity is related to BSV. These studies underscore the 
complex and dynamic nature of identifying age-related 
changes in brain variability related to the developmental 
trajectories of ASD and TD individuals.

Restricted and repetitive behaviors and rMSSD
Easson and McIntosh (2019) previously identified a nega-
tive relationship between BSV and scores on the social 
responsiveness scale (SRS) across individuals with and 
without an ASD diagnosis. We investigated the relation-
ship between rMSSD and repetitive behavior (ADI-RRB 
scores). While controlling for the main effects of linear 
and quadratic age, we found positive significant asso-
ciation between rMSSD and ADI-RRB scores. This pat-
tern was evident in clusters located in the PCC, IPL, 
Pcun, ITG, FuG, and cuneus cortex which belong to 
DMN, salience and visual networks. While we found 
no significant linear age × ADI-RRB interaction effects, 

the quadratic age × ADI-RRB interaction revealed an 
inverted U-shaped relationship between rMSSD and age 
for individuals with higher repetitive behavior scores 
(i.e., lower rMSSD levels in both younger and older indi-
viduals, and higher rMSSD in middle-aged individuals). 
Those with mid-range repetitive behavior scores dis-
played a weak inverted U-shaped rMSSD-age association. 
In contrast, those with lower scores showed a U-shaped 
relationship between rMSSD and age (i.e., higher rMSSD 
levels in both younger and older individuals, and lower 
rMSSD in middle-aged individuals), particularly in the 
PrCG, PoCG, STG, and MTG region which belong to 
functional brain networks such as DMN, dorsal atten-
tion network (DAN), and sensorimotor network (SMN). 
These patterns highlight how the relationship between 
ASD symptom severity strongly depends on the clinical 
symptom, sample size, and methodological approach.

Our findings align with the neurobiological mecha-
nisms underlying altered BSV and RRB in ASD. In ASD, 
an imbalance between excitation and inhibition—charac-
terized by increased glutamate and decreased GABA—
reduces the functional differentiation of brain processing 
systems, leading to excessive neural activity and increased 
noise. This heightened noise compromises the ability of 
the brain to process information accurately, reducing 
the reliability of neural representations [33, 34]. Studies 
in ASD rodent models have demonstrated that height-
ened excitatory and diminished inhibitory signaling can 
induce RRBs [35, 36]. Additionally, dopamine signaling 
plays a significant role in modulating BSV. Dopamine is 
integral to neuromodulation, regulating synaptic activ-
ity and modulating synaptic strength, influenced by fac-
tors such as the duration of dopamine receptor activation 
[37]. Depletion of dopamine in specific brain regions has 
been linked to increased BSV and reduced functional 
connectivity [38]. Altered dopamine signaling in ASD 
is linked to RRB-like symptoms, and studies report that 
dopamine agonist drugs can improve RRBs in individu-
als with ASD [39]. Overall, these neurobiological aspects 
may explain the relationship between the increased BSV 
and severity of RRBs in the ASD group.

The interplay between age, BSV, and RRB in ASD aligns 
with prior neuroimaging studies, which have reported 
associations between RRB and atypical functional con-
nectivity in multiple resting-state networks across 
different age groups in ASD [40–43]. Abbott and col-
leagues reported an imbalance of cortico-striatal intrin-
sic functional connectivity in children and adolescents 
(8–17 years) with ASD. This imbalance was characterized 
by increased functional connectivity in limbic circuits 
and reduced functional connectivity in frontoparietal and 
motor circuits and was associated with RRB [41]. Weng 
and colleagues reported hypo-connectivity between 
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PCC, mPFC, temporal lobes, and superior frontal gyrus 
(SFG) associated with RRB in adolescence [43]. Studies 
in adults with ASD revealed hyperconnectivity between 
PCC and the right parahippocampal gyrus [42]. Overall, 
these studies demonstrate that links between functional 
connectivity and the RRB behavioral phenotype changes 
from childhood to adulthood in ASD. These findings, 
coupled with the results of our current analysis, imply 
that the brain regions from DMN, DAN, SMN, and sali-
ence network exhibit age-related atypical BSV, and func-
tional connectivity trajectories associated with RRBs 
in ASD. Previous studies investigating the relationship 
between functional connectivity and BSV have yielded 
mixed findings. Some report reduced functional con-
nectivity in brain regions with increased BSV [38], while 
others find a positive correlation between BSV and func-
tional connectivity [44]. Further research is required to 
understand the age-related dynamics of BOLD variability 
and its relationship with functional connectivity, espe-
cially in ASD.

The current results support the notion that there is a 
relationship between heightened BSV and the occurrence 
of RRBs; however, the direction of causality remains 
uncertain. It is unclear whether increased BSV pre-
cedes and influences the development of RRBs or if the 
observed variability patterns are a consequence of the 
RRBs themselves (e.g., potentially arising from ongoing 
efforts to manage and control them). RRBs have been 
observed to be less prevalent and less severe in older 
age groups compared with younger individuals [45, 46]. 
It is plausible that the increase in BSV with age among 
individuals with higher RRBs may serve a compensatory 
purpose in adulthood. These changes may compensate 
for age-related reductions in network complexity and 
integration or might indicate dysfunctional signal vari-
ability. For example, stochastic resonance (SR) may play 
a role in the observed increase in BSV with age, poten-
tially reflecting a compensatory mechanism where noise 
is optimized to maintain neural function and process-
ing efficiency despite age-related declines. This increase 
in BSV could also indicate a shift in SR dynamics, where 
greater external or internal noise becomes necessary to 
support the same level of neural integration and signal 
detection in older individuals, particularly those with 
higher levels of RRBs [47–49].

In contrast to individuals with elevated RRBs, we 
observed a reduction in rMSSD associated with lower 
RRB symptoms from childhood to adulthood. These 
findings suggest that these individuals have potentially 
maintained neural efficiency over time. The brains of 
individuals with lower RRB scores might be more capa-
ble of maintaining stable and efficient neural networks 
as they age, avoiding unnecessary increases in BSV that 

could potentially disrupt cognitive function. Future work 
should elucidate the relationships between RRBs and the 
maturation of functional brain networks across develop-
ment using longitudinal datasets to enhance early risk 
assessment, inform developmental models of ASD patho-
genesis, and provide a neurophysiological foundation for 
novel interventions focused on RRBs.

Limitations
There are a few limitations important to note in the pre-
sent study. First, we employed a cross-sectional approach 
to examine age-related associations between variability 
and repetitive behaviors, which limits our ability to infer 
developmental trajectories [50]. Additionally, despite 
the demographic matching of groups, a cross-sectional 
design cannot disentangle the effects of a condition from 
its underlying causes. An important consideration of our 
cross-sectional study is the potential for misinterpret-
ing age-related correlations, as it assumes homogeneity 
among younger and older individuals with the same diag-
nosis, disregarding the distinct characteristics associated 
with developmental psychopathologies that vary with 
age. Moreover, the inherent constraint of cross-sectional 
studies lies in their inability to capture individual longi-
tudinal changes, impeding our comprehension of how 
the illness and related imaging measures evolve. Future 
research employing longitudinal designs could provide 
valuable insights into how the relationship between BSV 
and repetitive behaviors in individuals with ASD evolves.

Although our study includes participants aged 5 to 
50, the number of individuals above 30 is limited due to 
constraints in the ABIDE dataset. Specifically, our pri-
mary analysis involved only 22 participants over 30, and 
the oldest participant did not exceed 30 for the ADI-RRB 
analysis. This skew towards childhood, adolescence, and 
young adulthood in our study provides an opportunity 
for a more detailed examination of these developmental 
stages. However, the limited number of older partici-
pants suggests that age x diagnosis interactions might 
be influenced predominantly by the few older individu-
als included, potentially affecting the generalizability of 
our findings across the entire age range. Future research 
should consider employing datasets with a broader and 
more evenly distributed age range. This would ensure a 
more comprehensive analysis and provide better insights 
into how the relationships between BSV, age, and ASD 
symptomatology evolve across the lifespan.

Another limitation in our study concerns potential 
heterogeneity within the ASD group [51]. We primarily 
focused on right-handed, high-functioning adult males, 
which could not account for all between-participant 
differences. Recent studies have suggested that genetic 
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patterns may influence neural responses in autism [52, 
53], and there is substantial heterogeneity among indi-
viduals with ASD [54]. To gain a more comprehensive 
understanding, future investigations should explore these 
observations in more genetically and behaviorally homo-
geneous subgroups of ASD individuals.

While we used the ADI-RRB scale to explore the age-
related relationship between BSV and repetitive behavior 
in ASD, the limited availability of additional RRB meas-
ures and the smaller number of participants with these 
measures in the ABIDE dataset may result in an incom-
plete assessment of RRBs. Consequently, our findings 
may not capture all the nuanced relationships between 
BSV and RRB. Future research should consider employ-
ing a broader array of RRB assessments with a larger 
sample size to enhance the power and robustness of the 
findings. DSM-5 [55] classifies RRBs into four subtypes: 
(a) stereotyped or repetitive motor movements, (b) 
inflexible adherence to routines, (c) highly restricted, fix-
ated interests that are abnormal in intensity or focus, and 
(d) hyper- or hypo-reactivity to sensory input or unusual 
interests in sensory aspects of the environment. Given 
the heterogeneity of these repetitive behaviors, there 
exist considerable challenges in achieving a thorough 
understanding and comprehensive investigation of this 
phenotype. Future research should aim to address these 
gaps and explore the associations between BSV and spe-
cific subcategories of repetitive behaviors in individuals 
with ASD.

Lastly, in our study, rMSSD values ranged from 0.3 to 
1. The range of MSSD values depends strongly on the 
TR, as longer TRs allow for more changes of the BOLD 
signal between images. Thus, rMSSD is not capped at a 
maximum value of 1, but it is dependent on the TR of 
the fMRI scan. We previously showed that the range of 
MSSD for a fast TR (0.645 s) is different than the range of 
MSSD for a slow TR (1.4 s); additionally, the strength of 
linear and quadratic effects may depend on the TR [56]. 
Thus, the choice of TR could have influenced the linear 
and quadratic effects observed in our analysis. Further 
studies should evaluate the influence of different TR val-
ues on age-related BSV in ASD to optimize fMRI acquisi-
tion and improve assessments of brain signal variability 
in ASD.

Conclusions
The current study reveals categorical and dimensional 
relationships between BSV, age, and RRB severity across 
ASD and TD participants. When exploring categorical 
group differences in BSV, we found that variability in the 

TPJ, temporal cortex, and occipital cortex is significantly 
lower in ASD compared with TD. For the age x group 
interaction, we observed a linear increase in variability 
in DMN and visual network nodes with age in ASD with 
a linear decrease in variability with age in TD individu-
als. In contrast, the quadratic age × group interaction 
showed an inverted U-shaped rMSSD-age relationship 
in ASD and a U-shaped rMSSD-age relationship in 
TD in the DMN and nodes. We observed a continuum 
of relationships when examining variability concern-
ing predictor variables like repetitive behavioral sever-
ity. We found a significant positive relationship between 
rMSSD and ADI-RRB, controlling for linear and quad-
ratic age, within nodes of the DMN, salience, and visual 
networks. Although the linear age x ADI-RRB interac-
tion showed no significant findings, the quadratic age x 
ADI-RRB interaction revealed an inverted U-shaped rela-
tionship for individuals with higher repetitive behavior 
scores. Those with mid-range repetitive behavior scores 
displayed a weak inverted U-shaped rMSSD-age asso-
ciation. Whereas those with lower scores demonstrated 
U-shaped relationship, particularly in the brain regions of 
DMN, DAN, and SMN. These findings highlight distinc-
tive age-related BSV patterns linked to repetitive behav-
iors in ASD, contributing to the growing literature on 
atypical neural variability in ASD.
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