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The preference for surprise in reinforcement 
learning underlies the differences 
in developmental changes in risk preference 
between autistic and neurotypical youth
Motofumi Sumiya1,2*, Kentaro Katahira3,4, Hironori Akechi5 and Atsushi Senju1,2 

Abstract 

Background Risk preference changes nonlinearly across development. Although extensive developmental research 
on the neurotypical (NTP) population has shown that risk preference is highest during adolescence, developmental 
changes in risk preference in autistic (AUT) people, who tend to prefer predictable behaviors, have not been investi-
gated. Here, we aimed to investigate these changes and underlying computational mechanisms.

Method We ran a game-like risk-sensitive reinforcement learning task on 75 participants aged 6–30 years (AUT 
group, n = 31; NTP group, n = 44). Focusing on choices between alternatives with the same objective value but differ-
ent risks, we calculated the risk preference and stay probability of a risky choice after a rewarding or non-rewarding 
outcome. Analyses using t-tests and multiple regression analyses were conducted. Using the choice-related data 
of each participant, we fit four reinforcement learning models and compared the fit of each model to the data. 
Furthermore, we validated the results of model fitting with multiple methods, model recovery, parameter recovery, 
and posterior predictive check.

Results We found a significant difference in nonlinear developmental changes in risk preference between the AUT 
and NTP groups. The computational modeling approach with reinforcement learning models revealed that individual 
preferences for surprise modulated such preferences.

Conclusions These findings indicate that for NTP people, adolescence is a developmental period involving risk 
preference, possibly due to lower surprise aversion. Conversely, for AUT people, who show opposite developmental 
change of risk preference, adolescence could be a developmental period involving risk avoidance because of low 
surprise preference.
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Background
Risk preference, the propensity to take or avoid risk, is a 
fundamental driver of decision-making, which reportedly 
undergoes complex developmental changes across one’s 
lifespan. Psychometric questionnaire surveys and labora-
tory task studies provide empirical evidence supporting 
a developmental peak in risk-taking in mid-adolescence, 
that is, nonlinear developmental changes in risk-taking 
that increase and decrease after adolescence [1–5]. Con-
versely, adolescents are also known to make more pru-
dent decisions than adults, depending on the task and 
context [6–8]. Although extensive research on neuro-
typical (NTP) individuals has revealed the developmental 
trajectory of changes in risk preference, our understand-
ing of how these processes unfold in autistic (AUT) indi-
viduals remains limited.

Clinically, AUT is defined as a neurodevelopmental 
condition that is primarily characterized by difficul-
ties in social communication and interaction as well as 
restricted, repetitive patterns of behavior, interests, or 
activities [9]. In recent years, multiple studies with large 
numbers of research participants have shown that eve-
ryday risky behaviors, such as binge drinking or using 
illicit drugs, which are considered problematic in NTP 
individuals, are less common in AUT individuals [10, 
11]. Such risk preferences in AUT individuals have also 
been investigated in experimental studies. Recently, van 
der Plas et  al. [12] conducted a narrative review of 104 
decision-making studies on AUT people and found that 
their performance in reward-learning paradigms (e.g., 
learning which deck of cards provides the best reward) 
was similar to that of NTP individuals, but their perfor-
mance in value-based paradigms (e.g., making a decision 
based on a choice between two outcomes that differ in 
subjective value) was different from that of NTP individ-
uals. For example, in several studies that adopted value-
based paradigms, financial risk-taking tasks focused on 
choices between alternatives of equivalent objective value 
but different risk for rewards (i.e., a choice between a 
sure option to win $1 versus a risky option to have a 50% 
chance to win $2) have shown that AUT adults are more 
risk-averse than NTP adults [13–15]. Although these 
studies suggest that differential subjective value process-
ing, not reward learning, in risk-taking decisions under-
lies the risk aversion in AUT people, the core underlying 
mechanism that affects subjective decision-making is not 
known.

The computational modeling approach has helped 
us investigate the possible computational mechanisms 
underlying risk-taking decisions primarily in the NTP 
population. Multiple reinforcement learning models, 
such as the utility model, which incorporates nonlinear 
subjective utilities for different amounts of reward, or 

risk-sensitive model in which positive and negative pre-
diction errors (differences between a decision outcome 
and its predicted outcome) have asymmetric effects 
on learning, have been proposed to explain risk-taking 
decision-making [16, 17]. Recently, we proposed that the 
preference for surprise in a decision outcome is a critical 
factor that can modulate risk preference; surprise occurs 
because of prediction errors, regardless of whether the 
error is positive or negative [18]. Based on the cognitive 
evolutionary model of surprise [19] and experimental 
studies [20–22], we proposed a reinforcement learn-
ing model in our previous study, the surprise model, by 
introducing a parameter that modulates the value of the 
outcome based on surprise in each decision [18]. Using 
two datasets of risk-taking tasks with monetary out-
comes [16, 23] and behavioral simulations, we showed 
that the surprise model had a better fit, indicating that 
surprise in each decision leads individuals to risk-averse 
behavior. Therefore, we hypothesized that the tendency 
toward risk aversion in AUT people is explained by their 
aversion to surprise. This is because AUT individuals 
tend to have a strong preference for routine, and repeti-
tive behaviors are hypothesized to stem from the differ-
ent ways in which prediction errors are processed, which 
could lead to a preference for predictable behaviors or 
situations [23, 24]. Accordingly, it is possible that the 
preference for surprise, as a core mechanism underlying 
the developmental change in risk preference, leads to a 
difference in risk preference between the two neurodi-
verse populations.

In this study, we aimed to investigate the nonlinear 
developmental changes in risk preference in AUT and 
NTP individuals as well as to elucidate the underlying 
computational mechanism from the perspective of sur-
prise preference by adopting a multi-method approach 
that integrates online experimental paradigms, cross-
sectional data, and computational modeling. We hypoth-
esized that the risk preferences (i.e., choices between 
alternatives with the same objective value but different 
risks) of AUT people would differ from those of NTP 
people, which change nonlinearly across development. 
Furthermore, we hypothesized that this difference in risk 
preference between the two neurodiverse populations 
would be underpinned by a preference for surprise.

Methods
Participants
This study was conducted as part of a multiple-study 
protocol project targeting students or alumni of a pri-
vate school, Musashino Higashi Gakuen, and included 
NTP participants and AUT participants who had 
been clinically diagnosed with autism spectrum disor-
der by at least one pediatrician, child psychiatrist, or 
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clinical psychologist. In this study, 125 participants aged 
6–30 years completed an online task in their homes. After 
multiple data exclusion steps, we analyzed the data of 75 
participants (17 females, 57 males, and 1 person who did 
not prefer to report; mean age = 16.03 ± 5.86 years; AUT 
group, n = 31; NTP group, n = 44) (Supplementary mate-
rial 1: Table S1). The parents of all participants completed 
the Japanese version of the Social Communication Ques-
tionnaire (SCQ [25]). Among these participants, 27 and 
25 in the AUT and NTP groups, respectively, reported 
their intelligence quotient (IQ) scores measured for pre-
vious projects (e.g., [26–28]) using either the Wechsler 
Intelligence Scale for Children III or Wechsler Adult 
Intelligence Scale, Revised. Since age and IQ (those for 
reported) were significantly different between the groups, 
we performed the correlation analysis between age and 
IQ in each group to exclude the possibility if the non-
linear developmental changes in risk preference can be 
explained by the changes in IQ, and confirmed linearly 
the correlation in each group (ASD: r = − 0.386, t(25) = 
− 2.095, p = 0.046, NTP: r = − 0.456, t(23) = − 2.454, 
p = 0.022). These data suggest that IQ is not a significant 
indicator of risk preference.

Exclusion criteria
We excluded data from eight participants who did not 
press the button in > 10% of the trials. We then screened 
the data for a reaction time that was too fast (mean of 
all trials < 300  ms) and the same button being pressed 
in > 90% of the trials; these applied to none of the par-
ticipants. Additionally, based on the study by Rosen-
baum et al. [17], we excluded the data of 42 participants 
whose mean accuracy in the test trials in the second 
and third blocks was < 60%. After applying these cri-
teria, we used regression analysis to confirm that par-
ticipants learned the probability of each option block by 
block (t = 6.065, p < 0.001) (mean accuracy of test blocks: 
1 = 0.63, 2 = 0.77, 3 = 0.79). Subjects who performed the 

task intensively should increase their correct response 
rate as the task progresses, and should exceed 50% of 
the random correct response rate from the second block 
onward, when they have probably made some progress in 
their learning. Rigorous exclusion methods can improve 
data quality by filtering out inattentive or fraudulent par-
ticipants without introducing significant bias into online 
experiment data [29]. Therefore, the criteria were critical 
for selecting participants who took the task seriously and 
made the results of this study valid, as a project with an 
inclusive approach that does not pre-select participants 
by IQ or language development. To exclude the possi-
bility that our criteria did not systematically exclude the 
certain pool of participants, such as participants with low 
IQ or high severity of symptoms, we examined whether 
the excluded participants differed systematically from the 
remaining participants. We confirmed that we did not 
find any significant difference in the IQ or SCQ score in 
each group (Supplementary material 1: Table S2, S3).

Experimental procedure
Most participants completed the task on their personal 
computers (PCs), and the remainder completed the task 
on their tablets (PC, 62 participants; tablets, 13 partici-
pants) (Supplementary material 1: Table  S1). The par-
ticipants accessed Pavlovia (pavlovia.org) to complete the 
experimental task, which was developed using PsychoPy 
v2021.2.3. The stimuli used in the task (aliens, treasures, 
and backgrounds) were adapted from open-access mate-
rials created by Kool et al. [30], whereas the other stimuli 
(rockets) were adapted from an online site (iStockphoto.
com).

Experimental task
In this study, we created a treasure task based on the 
risk-sensitive reinforcement learning task of Rosenbaum 
et al. [17] (Fig. 1). As a cover story, the participants rode 
a rocket to a planet and received treasures from an alien 

Fig. 1 Task sequence
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who gave them 0–8 treasures. The number of treasures 
the participants received depended on the rocket they 
chose, and their challenge was to collect as many treas-
ures as possible and obtain the large rocket. There were 
five rockets, including three deterministic rockets for 0, 2, 
and 4 treasures, respectively, and two probabilistic rock-
ets for 0 or 4 and 0 or 8 treasures, respectively (50% each). 
In the task, there were 3 blocks and 183 trials, including 
42 sure vs. risky choices (24 choices for a 100% 2-treasure 
rocket vs. a 50% 0- or 4-treasure rocket and 18 choices 
for a 100% 4-treasure rocket vs. a 50% 0- or 8-treasure 
rocket), 24 other choices (a 100% 2-treasure rocket vs. a 
50% 0- or 8-treasure rocket), 42 test choices that ensured 
that participants learned the features of each rocket (e.g., 
a 100% 2-treasure rocket vs. a 100% 4-treasure rocket), 
and 75 forced-choice trials in which participants were 
forced to learn the features of each rocket. The trial order 
was pseudo-randomized based on seven templates cre-
ated from the order of the seven participants in the study 
by Rosenbaum et al. [17].

Basic analysis
Risk preference
First, we compared group differences in risk prefer-
ence using a t-test. Subsequently, using multiple regres-
sion analysis, we examined whether there was a group 
difference in risk preference that changed nonlinearly 
with age by modeling the interaction term of the quad-
ratic term of age and groups. As confounding covari-
ates, in addition to the reported gender (male, female, 
or preferred not to report) and execution device (PC or 
tablet), we modeled the accuracy of the test trials in the 
second and third blocks, which was significantly corre-
lated with IQ scores among participants who reported 
their IQ score (r = 0.34, p = 0.012), to remove the effect 
of the intellectual component associated with this task. 
Accordingly, the interaction term of the quadratic term 
of age and groups, interaction term of age and groups, 
execution device, reported gender, and accuracy of the 
test trials were modeled. Models were assessed using the 
lm_robust command from the "estimatr" package [31] 
with heteroskedasticity-consistent 0 robust standard 
errors. This method estimates the standard errors under 
heterogeneous variances and allows  for valid inference 
even when the assumption of constant variance is vio-
lated. In these analyses, categorical variables were coded 
as 1 = AUT and − 1 = NTP for the group and as 1 = PC 
and − 1 = tablet for the device; continuous variables (age 
and accuracy) were scaled to mitigate multicollinearity 
issues. We checked for the multicollinearity of regressors 
within models using the “performance” package [32], and 
confirmed that the variance inflation factor (VIF) of each 
regressor did not exceed 10, while VIF values greater 

than 10 are a sign of high, unacceptable correlation of 
model predictors.

Furthermore, as a consecutive analysis to confirm the 
nonlinear developmental change in risk preference in 
each group, we conducted a multiple regression analysis 
for risk preference within each group using the model 
with the quadratic term of age, in addition to linear term 
of age, reported sex, execution device, accuracy of the 
test trials, and SCQ score.

Stay probability
We calculated the stay probability (i.e., the probability of 
choosing the same option consecutively) of the sure and 
risky choices both after the rewarding and non-reward-
ing outcomes. In these calculations, we did not consider 
the outcome of the forced-choice trials that appeared 
between the re-risk choice trials. We investigated the 
group differences in each stay probability that changed 
nonlinearly with age by modeling the interaction term of 
the quadratic term of age and groups. The other regres-
sors were the same as those used in the analysis for risk 
preference. Furthermore, as a consecutive analysis to 
confirm the nonlinear developmental change in each 
stay probability in each group, we conducted a multiple 
regression analysis within each group using the same 
regressors as in the analysis for risk preference.

Computational modeling
Model description
In this study, we fit three widely used models, the 
Q-learning (QL), utility, and risk-sensitive QL (RSQL) 
models [16–18], and our proposed model, the surprise 
model [18]. For each model, the learning rate was con-
strained to the range, 0 ≤ α, α+, α− ≤ 1, with a beta (2,2) 
prior distribution, and the inverse temperature was con-
strained to the range, 0 ≤ β ≤ 20, with a gamma (2,3) prior 
distribution. The utility parameter was constrained to the 
range, 0 ≤ ρ ≤ 2.5, with a gamma (1.5,1.5) prior distribu-
tion. Additionally, the modulation rate of the surprise 
model was constrained to − 1 ≤ d ≤ 1 with a uniform prior 
distribution.

QL model
The QL model was used as the base model for the other 
three models. The QL model incorporates the Res-
corla-Wagner rule, where only the Q-value of the cho-
sen option is updated based on a prediction error that 
explains the observed behavior by computing the action 
value Q(t) for each trial t, which represents the expected 
outcome of the action. The Q-value of the chosen action 
is iteratively updated based on a prediction error, which 
is the difference between the expected outcome Q(t) and 
the received outcome r, by a learning rate α.
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Utility model
The utility model is a QL model that incorporates nonlin-
ear subjective utilities for different amounts of rewards. 
In this model, the reward outcome is exponentially trans-
formed by ρ, which represents the curvature of the sub-
jective utility function for each individual.

RSQL model
In the RSQL model, which is a QL model, positive and 
negative prediction errors have asymmetric effects on 
learning. Specifically, there are separate learning rates: 
α+ and α− for positive and negative prediction errors, 
respectively.
Q(t + 1) = Q(t)+ α+(r(t)− Q(t)) for positive predic-

tion error
Q(t + 1) = Q(t)+ α−(r(t)− Q(t)) for negative predic-

tion error

Surprise model
In the surprise model, the received outcome r is affected 
by surprise (absolute value of the prediction error). In 
this model, S(t) is the subjective utility modulated by 
surprise. The degree of modulation is controlled by the 
parameter d as follows:

For all models, the probability of choosing option i dur-
ing trial t is provided by the softmax function:

where β is the inverse temperature parameter that deter-
mines the sensitivity of the choice probabilities to dif-
ferences in the values, and K represents the number of 
possible actions (in the present study, K = 2); moreover, 
a(t) denotes the option chosen in trial t.

Parameter estimation
We fit the parameters of each model using the maxi-
mum a posteriori (MAP) estimation, which improves 
parameter estimates by incorporating prior information 
on parameter values [33, 34]. We also approximated the 
log marginal likelihood (model evidence) for each model 
using the Laplace approximation [35]. We used the R 

Q(t + 1) = Q(t)+ α(r(t)− Q(t))

Q(t + 1) = Q(t)+ α(r(t)ρ − Q(t))

S(t) = r(t)− d|r(t)− Q(t)|,

Q(t + 1) = Q(t)+ α(S(t)− Q(t)).

P(a(t) = i) =
exp(β · Qi(t))

∑K
j=1 exp

(

β · Qj(t)
)
,

function “solnp” in the “Rsolnp” package [36] to estimate 
the fitting parameters.

Model comparison
For model selection, the model evidence (log marginal 
likelihood) for each model and participant was subjected 
to random-effects Bayesian model selection (BMS) using 
the "spm_BMS" function in SPM12 [37]. BMS provides a 
less biased and statistically more accurate way to identify 
the best model at the group level by estimating the pro-
tected excess probability, which is defined as the prob-
ability of a particular model being more frequent in the 
population among a set of candidate models [34]. We 
conducted a model comparison for all participants in 
each group. To visualize how well the winning model fit 
the data, we also determined the number of participants 
that best fit each model [34].

Estimated parameters
After the model comparison, we investigated group dif-
ferences in the estimated parameters of the winning 
model, which changed nonlinearly with age, by modeling 
the interaction term of the quadratic term of age and 
groups. The other regressors were the same as those used 
in the risk preference analysis. Furthermore, as a con-
secutive analysis to confirm the nonlinear developmen-
tal change in the estimated parameters in each group, 
we conducted a multiple regression analysis within each 
group with the same regressors as in the risk preference 
analysis.

Parameter and model recovery
We conducted parameter recovery to assess the reliabil-
ity of parameter estimation procedures; specifically, we 
determined how accurately parameters were estimated 
when the true generative model and its parameter values 
were known [34, 38, 39]. Model recovery was performed 
to test the discriminability of each model [34, 38, 39]. 
Details of each analysis are provided in Supplementary 
material 1 (Supplementary material 1: Text S1, S2).

Posterior predictive check
We performed a posterior predictive check that analyzed 
the simulated data in the same way as the analyses of the 
empirical data to validate that each model adequately 
captured behavioral data [34, 40].Detailed information 
of the analysis is provided in Supplementary material 1 
(Supplementary material 1 Text S3).

Supplemental analysis with open data
As the task used in this study was based on the study by 
Rosenbaum et al. [17], to confirm that the surprise model 
was better fitted to the risk preference data with similar 
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age diversity, we conducted model fitting and model 
comparisons. For model fitting, the parameters were set 
to be the same as those used in this study. Additionally, to 
confirm the nonlinear relationship between age and the 
surprise parameter, we conducted a regression analysis 
of the surprise parameter using the quadratic term of the 
scaled age.

Results
Risk preference
We did not find a significant group difference in risk 
preference (t(62.282) = 0.219, p = 0.827, d = 0.052). Mean-
while, the multiple regression analysis revealed a signifi-
cant interaction of group and the quadratic term of age 
(β = 0.098, t(65) = 2.927, p = 0.005, 95% CI [0.031, 0.165]) 
(Fig. 2a). The results of the other regressors are summa-
rized in Fig.  3 and Supplementary material 1: Table  S4. 
We calculated the multicollinearity of the regressors and 
confirmed weak correlations between them (Figure S1a).

With consecutive multiple regression analyses within 
each group, we confirmed the tendency of an inverted 
U-curve developmental change in the NTP group (β = 
− 0.039, t(36) = − 1.953, p = 0.059, 95% CI [− 0.080, 
0.002]) and a U-curve developmental change in the AUT 
group (β = 0.055, t(24) = 1.970, p = 0.060, 95% CI [− 0.003, 
0.113]) (Supplementary material 1: Figure S2 and S3, 
Table S5).

Stay probability
We performed a multiple regression analysis for each 
stay probability for the sure and risky choices. We found 

a significant interaction of group and the quadratic term 
of age for the stay probability of sure choices (β = − 0.092, 
t(65) = − 2.290, p = 0.025, 95% CI [− 0.172, − 0.012]) 
(Fig. 4a). For the stay probability of risky choices after a 
non-rewarding outcome, we removed the covariates, sex 
and device, from the model to address the excessive cor-
relation among the explanatory variables. We found a 
significant interaction of group and the quadratic term 
of age (β = 0.094, t(67) = 2.151, p = 0.035, 95% CI [0.007, 
0.177]) (Fig.  4b). Furthermore, we found no significant 
relationship, only a tendency toward one, between group 
and the quadratic term of age for the stay probability 
of risky choices after a rewarding outcome (β = 0.056, 
t(63) = 1.795, p = 0.077, 95% CI [− 0.006, 0.118]) (Fig. 4c). 
The results for the other regressors are summarized in 
Fig. 5 and Supplementary material 1: Table S6. Informa-
tion on the multicollinearity of the regressors is summa-
rized in Supplementary material 1: Figure S9.

We conducted consecutive multiple regression analy-
ses for each stay probability within each group using the 
same regressors as those in the risk preference analysis 
in each group; however, in the analysis of the stay prob-
ability for sure choices in the NTP group, a regressor 
(device) was removed to deal with multicollinearity. We 
confirmed the significance of a U-curve developmen-
tal change in sure choices in the NTP group (β = 0.071, 
t(37) = 3.088, p = 0.004, 95% CI [0.024, 0.118]) but not in 
the AUT group (β = − 0.021, t(24) = − 0.595, p = 0.558, 
95% CI [− 0.092, 0.051]). Further, we confirmed the sig-
nificance of a U-curve developmental change in risky 
choices after a non-rewarding outcome in the AUT 

Fig. 2 Relationship of age with (a) risk preference and (b) the estimated surprise parameter. The regression lines are from a linear regression model 
including linear and quadratic age terms. Data points represent individual participants. The lines and 95% confidence intervals were estimated 
under heterogeneous variances to reduce the influence of outlier data
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Fig. 3 Model coefficients for risk preference (blue) and the surprise parameter (orange). Parameters within models were coded as group (AUT = 1, 
NTP = − 1), device (PC = 1, tablet = − 1), and sex (M = male, F = female, N = not reported)

Fig. 4 Relationship between age and the stay probability of a (A) sure choice, (B) risky choice after a non-rewarding outcome, and (C) risky choice 
after a rewarding outcome. The regression line is from a linear regression model including linear and quadratic age terms. Data points represent 
individual participants. The lines and 95% confidence intervals were estimated under heterogeneous variances to reduce the influence of outlier 
data



Page 8 of 13Sumiya et al. Molecular Autism            (2025) 16:3 

group (β = 0.080, t(23) = 3.532, p = 0.002, 95% CI [0.033, 
0.126]) but not in the NTP group (β = − 0.016, t(36) = 
− 0.424, p = 0.674, 95% CI [− 0.094, 0.062]). Furthermore, 
we confirmed the significance of a U-curve developmen-
tal change in risky choices after a rewarding outcome in 
the AUT group (β = 0.073, t(24) = 2.782, p = 0.010, 95% 
CI [0.019, 0.127]) but not in the NTP group (β = 0.020, 
t(34) = 1.016, p = 0.317, 95% CI [− 0.020, 0.061]). Instead, 
the linear effect of age on risky choices after a reward-
ing outcome was significant in the NTP group (β = 0.082, 
t(34) = 2.846, p = 0.007, 95% CI [0.023, 0.141]) (Supple-
mentary material 1: Figure S10 and S11, Table S7).

Model comparison
We compared the model evidence for each model (log 
marginal likelihood) and found that the surprise model 
had the highest value (Fig.  6a). We then performed a 
Bayesian model comparison to determine the best model 
to explain choice behavior and found that the surprise 
model had a significantly higher protected exceedance 
probability than the other models, indicating that it was 
more frequent in this population (Fig.  6b). We further 

checked the fitness of each model in each group and con-
firmed that the surprise model had the best fit among the 
four models (Supplementary material 1: Figure S12). We 
also confirmed that the fit of the surprise model was the 
best in a relatively large proportion of participants (42% 
in the AUT group, 41% in the NTP group) compared 
with that of the other models (utility model: 35% in the 
AUT group, 20% in the NTP group; QL model: 13% in 
the AUT group, 27% in the NTP group; RSQL model: 
9.7% in the AUT group, 11% in the NTP group) (Supple-
mentary material 1: Table  S8). The distribution of each 
estimated parameter in the surprise model is shown in 
Supplementary material 1: Figure S13 to illustrate the 
potential problem fitting [34, 41]. These results are dis-
cussed in the Supplementary material 1 (Supplementary 
material 1: Text S4).

Estimated parameters
We used the surprise parameter of the surprise model, 
the winning model in the model comparisons described 
below, as the dependent variable in the multiple regres-
sion analysis. We found a significant interaction between 

Fig. 5 Model coefficient for stay probability for a risky choice after a non-rewarding outcome (blue) and rewarding outcome (orange). Parameters 
within models were coded as group (AUT = 1, NTP = − 1), device (PC = 1, tablet = − 1), and sex (M = male, F = female, N = not reported)
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group and the quadratic term of age (β = − 0.342, t(65) = 
− 2.977, p = 0.004, 95% CI [− 0.571, − 0.113]) (Fig.  2b). 
The results of the other regressors are summarized in 
Fig. 3 and Supplementary material 1: Table S4. Informa-
tion on the multicollinearity of the regressors is summa-
rized in Supplementary material 1: Figure S1b.

With consecutive multiple regression analyses within 
each group, we confirmed the significance of a U-curve 
developmental change in the NTP group (β = 0.142, 
t(36) = 2.063, p = 0.046, 95% CI [0.002, 0.282]) and an 
inverted U-curve in the AUT group (β = − 0.203, t(24) = 
− 2.249, p = 0.034, 95% CI [− 0.389, − 0.017]) (Supple-
mentary material 1: Figure S4 and S5, Table S9).

In addition to the surprise parameter, we conducted 
multiple regression analysis with the other parameters 
in the surprise model: learning rate and inverse tempera-
ture. To address multicollinearity, we only modeled the 
interaction term of the group and age and of the group 
and the quadratic term of age. The effect of the interac-
tion between group and the quadratic term of age was 
significant on the inverse temperature (β = − 1.871, 
t(69) = − 2.298, p = 0.025, 95% CI [− 3.496, − 0.247]) 
but not the learning rate (β = − 0.029, t(69) = − 0.876, 
p = 0.384, 95% CI [− 0.095, 0.037]) (Supplementary mate-
rial 1: Figure S6-S8, Table S10). These data are consistent 
with those in previous literature on the NTP population 
[42–44] and have added new findings about the AUT 
population. These results were discussed in the supple-
mental text (Supplementary material 1: Text S5).

Parameter and model recovery
For most of the parameters in all models, the recovered 
and true parameters were highly correlated (r > 0.91) (QL: 
alpha, utility: alpha & utility, RSQL: alphaP & alphaN, 
surprise: alpha & surprise), confirming that these param-
eters were identifiable (Supplementary material 1: Text 

S6). Additionally, all models showed high recovery rates 
(Supplementary material 1: Text S7).

Posterior predictive check
We conducted a multiple regression analysis of real pref-
erence and stay probability data with simulated data from 
all models, and confirmed that these models, especially 
utility and surprise models, can capture data sufficiently 
well to predict real behaviors (Supplementary material 1: 
Text S8).

Supplemental analysis with open data
As a result of model comparisons using the data of 
Rosenbaum et  al. [17], who found a nonlinear develop-
mental change in risk preference in NTP participants of 
similar age as that in this study and used a similar task but 
with a different monetary context, we confirmed that the 
surprise model had a better fit based on the model evi-
dence (Supplementary material 1: Figure S14a) and pro-
tected exceedance probability (Supplementary material 
1: Figure S14b) than the other models. Accordingly, add-
ing evidence to this study, the surprise model can explain 
the risk preference data well, including from the devel-
opmental perspective. Furthermore, with the regression 
analysis, we confirmed a significant nonlinear relation-
ship between the quadratic term of age and the surprise 
parameter (β = − 0.228, t(60) = − 2.858, p = 0.006, 95% 
CI [− 0.387, − 0.068]) (Supplementary material 1: Figure 
S15).

Discussion
This is the first study to investigate the age-related non-
linear changes in risk preference in AUT and NTP par-
ticipants and propose the underlying computational 
mechanism that best explains the risk preference. Con-
trary to our hypothesis, we did not find a group difference 

Fig. 6 Model comparison. a Evidence of each model (log marginal likelihood). b Bayesian model comparison
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in the mean risk preference. Instead, we found a signifi-
cant difference in the relationship between risk prefer-
ence and the quadratic term of age between the AUT and 
NTP groups. This finding indicated that risk preference 
in the NTP group increased toward adolescence and 
decreased later, in line with the results of previous stud-
ies investigating different contexts [1–5]. By contrast, the 
result suggested that the AUT group showed a develop-
mental curve in the opposite direction: risk preference 
decreased toward adolescence and increased afterward. 
Critically, the estimated parameter from the surprise 
model, the better-fitting model based on model compari-
son, revealed that the preference for surprise underlies 
the opposite patterns of developmental change in risk 
preference between the AUT and NTP groups.

Adolescence is a time of dramatic emotional and social 
change [45, 46], which also poses vulnerabilities to physi-
ological and neural development [47, 48] in both NTP 
and AUT individuals. Although no studies have explic-
itly investigated the age-related nonlinear change in risk 
preference in AUT, South et  al. [49] reported the risk 
preference of AUT and NTP children and adolescents, 
which partly aligns with the current study. Their findings 
implied that risk preferences were similar between NTP 
and AUT adolescents, but there was a higher risk prefer-
ence in AUT individuals than in NTP individuals during 
childhood. This result indicates that age is an important 
moderator of risk preference differences between AUT 
and NTP individuals.

For further interpretation of risk preference, the stay 
probabilities for each option helped us better evaluate the 
factors influencing risk preference in AUT. In the AUT 
group, regardless of whether the reward was acquired, 
the stay probability of risky choices decreased toward 
adolescence and increased afterwards, but it was not the 
case for sure choices. These results indicate that among 
AUT youths, individuals who subjectively prefer risk 
choose the risky option regardless of the preceding objec-
tive outcome value, which may originate from the con-
formity of both positive and negative prediction errors, 
as a surprise [50]. Additionally, this finding is consistent 
with AUT features and preferences for repetitive behav-
ioral patterns [23, 24]. In the NTP group, individuals who 
subjectively avoided risk tended to stay with the sure 
choice, but with increasing age, the objective outcome 
value affected their stay probability for risky choices. 
Accordingly, in both groups, it seemed that risk-related 
choices were weighted not only by the objective outcome 
value but also by subjective value processing.

To uncover the computational mechanisms contrib-
uting to these behavioral indicators, we conducted 
computational modeling using reinforcement learning 
models that incorporated possible additional factors that 

could account for risk preference. The model compari-
son showed that the best-fitting model was the surprise 
model, which incorporated the surprise parameter that 
alters the reward sensitivity such that a larger prediction 
error further attenuates the reward value. Moreover, the 
relationship between the surprise parameter and quad-
ratic term of age showed a significant group difference in 
the opposite pattern to that of the relationship between 
risk preference and the quadratic term of age. Further-
more, these results were supported by those of an addi-
tional analysis of the data of a previous risk-taking study 
on NTP youth [17] that found that the surprise model 
had a better fit than previous winning models, such as 
the RSQL and utility models. We also found a significant 
nonlinear relationship between the quadratic term of age 
and the surprise parameter. These findings indicate that 
the preference for surprise is one of the key computa-
tional mechanisms underlying developmental changes in 
risk preference. Adolescence is often considered a devel-
opmental period with heightened sensitivity to rewards, 
resulting in risky behaviors [1–5]. Such reward sensitiv-
ity may be represented by the surprise parameter, which 
reflects individual differences in confidence regarding 
surprise in decision outcomes.

Moreover, we can consider the association with the 
surprise parameter with the trait recently focused in 
the literature of AUT, intolerance to uncertainty (IU). 
IU is defined as a dispositional trait involving maladap-
tive responses under conditions of uncertainty, and low 
IU is often reported in AUT individuals [51]. This trait 
has been captured in a questionnaire designed to cap-
ture general difficulty in coping with the unexpected or 
unknown, including vulnerability to surprise [52]. How-
ever, because it captures the general characteristics of 
individuals, the background factors that cause surprise 
and the perspective of reward prediction error (positive 
or negative prediction error) have not been considered 
in terms of IU. Therefore, although we cannot directly 
address the relationship between the surprise parameter 
and IU at this point, it is possible that the preference for 
surprise may be one of the hierarchical mechanisms of 
IU, such that we dislike the occurrence of surprise and 
thus dislike uncertainty. In future research, it is impor-
tant to define IU more precisely from a computational 
point of view [53, 54].

Importantly, previous studies have addressed the issue 
of developmental change in risk preference from the 
perspective of the interaction between cognitive control 
and emotional-incentive processing [5]. NTP individu-
als demonstrate an aversion to risk as a consequence of 
vague anxiety about risks during childhood. As they 
mature, they tend to take a risk as a means of enhanc-
ing their sensitivity to rewards and success during 
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adolescence. However, as their executive functioning 
develops in adulthood, they subsequently demonstrate 
an aversion to risk and a preference for certainty. Our 
finding about NTP individuals is consistent with this 
proposal. Accordingly, a surprise parameter may par-
tially represent emotional-incentive processing, sug-
gesting that those who dislike surprises may be vaguely 
anxious and thus risk-averse, while those who prefer 
surprises may not evoke the anxiety associated with risk. 
Furthermore, if we consider the AUT, which showed an 
inverse developmental change trend from the NTP, it is 
possible that AUT individuals may prefer risks associ-
ated with their preference for curiosity and exploratory 
behavior [55], as anxiety is not aroused in situations such 
as game play. And it may be that risk aversion in adoles-
cence is due to the difficulties experienced during the 
developmental process that make them more susceptible 
to anxiety, and that in adulthood, as executive functions 
develop, they again develop a preference for risk.

In addition, self-report studies of NTP individuals have 
reported that risk preference generally increases during 
adolescence and decreases during adulthood ([56]; for 
further discussion, see [5]). The trend for NTP individuals 
in the present study was similar to the findings of these 
studies, suggesting that game-like tasks such as those 
used in the present study measure such a general risk 
preference. It has been previously reported that game-
like tasks (with monetary rewards) in AUT children 
and adolescents produced results similar to those in the 
present study [49]. Thus, developmental changes in risk 
preference in AUT individuals may be generally different 
from those in NTP individuals, and future studieIns of 
general risk preference in AUT individuals are warranted. 
On the other hand, in a study using a financial task that, 
like the present study, equalized expected values for risky 
options (probabilistic outcomes) and safe options (deter-
ministic outcomes), risk preference declined interestingly 
during adolescence [17]. Although there are no studies 
of developmental changes in risk preference using mon-
etary rewards in AUT individuals, several studies using a 
similar paradigm in which the expected value of options 
is set equal have consistently found that AUT adults are 
more risk averse than NTP adults [13–15]. It is possible 
that, similar to the findings of this study, developmental 
changes in financial tasks may differ between NTP and 
AUT individuals. Future studies should also consider the 
context of such tasks.

Finally, these two findings were inconsistent with our 
initial hypothesis. First, AUT participants were not risk-
averse, as in previous studies with financial risk prefer-
ence tasks targeting AUT adults [13–15], indicating that 
the target age and context of the task (i.e., presence or 
absence of financial reward) may be important factors 

for risk preference. Another finding that did not sup-
port our hypothesis was the preference for surprise. In 
our previous study [18], we assumed that surprises nega-
tively affected the outcome value. However, in the pre-
sent study, which used a game-like risk preference task, 
approximately half of the participants in both groups 
preferred the risky option, and the estimated surprise 
parameter was below zero, suggesting that surprises 
increased the value of the outcome for these participants. 
It is known that some individuals who self-report that 
they like surprises prefer mysterious consumption—the 
opportunity to be surprised—over non-mysterious con-
sumption of equal expected value [50]. Accordingly, risk 
preference may differ in different contexts and individu-
als from the perspective of surprise preference. Future 
studies should investigate developmental changes in 
risk preference in different contexts, such as financial or 
game-like tasks.

Limitations
Our study has limitations. First, we performed online 
tasks as this study was conducted during the corona-
virus pandemic. This resulted in a lack of control over 
the experimental environment, and participant perfor-
mance varied to such an extent that much data had to be 
excluded based on the performance criteria. Our target 
sample size was more than 60 participants in each group, 
similar to that of Rosenbaum et  al. [17]. After multiple 
data exclusion steps, data from only 60% of participants 
could be included in the final sample. Using these crite-
ria, we confirmed that the accuracy increased as the task 
proceeded, similar to that of Rosenbaum et al. [17], and 
our results from the remaining data are rigid. However, 
the small number of participants for the analysis limited 
our ability to detect subtle effects of age, such as the non-
linearity developmental change of risk preference in each 
group, and the generalizability of our findings. Although 
it was not possible to provide a prior explanation of the 
task as part of a multi-study protocol project, such as that 
provided by Rosenbaum et al. [17], it may be necessary.

Another limitation was the variability of participant 
characteristics between groups, such as age and IQ, 
which were significantly different between the groups. 
Moreover, although not possible for the same reason, it 
would have been desirable to obtain IQ directly from all 
participants and to specify the device used to perform 
the task, such as limiting the use of personal computers. 
In this study, the parameters age and accuracy, instead of 
IQ, were statistically controlled for as covariates in the 
multiple linear regressions. Future studies should exam-
ine these conditions in detail after controlling for them. 
In addition, we believe that conducting longitudinal 
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studies of everyday risk-taking behaviors would allow for 
more ecologically valid findings.

Conclusion
The current study is the first to demonstrate a significant 
difference in nonlinear developmental changes in risk 
preference between AUT and NTP participants. This 
finding indicated that, during adolescence, risk prefer-
ence was similar between the AUT and NTP groups, but 
the opposite was true in childhood and adulthood. Using 
a computational modeling approach, we revealed the 
underlying mechanism of risk preference from the per-
spective of surprise preference. These findings indicate 
that in NTP individuals, adolescence is a developmental 
period in which risk is preferred because of the lowest 
aversion to surprise, whereas in AUT individuals, adoles-
cence is a developmental period in which risk is avoided 
because of the highest aversion to surprise.
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