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Abstract
Background  Autism spectrum disorder (ASD) is marked by disruptions in low-level sensory processing and higher-
order sociocognitive functions, suggesting a complex interplay between different brain regions across the cortical 
hierarchy. However, the developmental trajectory of this hierarchical organization in ASD remains underexplored. 
Herein, we investigated the maturational abnormalities in the cortical hierarchy among individuals with ASD.

Methods  Resting-state functional magnetic resonance imaging data from three large-scale datasets were analyzed: 
Autism Brain Imaging Data Exchange I and II and Lifespan Human Connectome Project Development (aged 5–22 
years). The principal functional connectivity gradient representing cortical hierarchy was estimated using diffusion 
map embedding. By applying normative modeling with the generalized additive model for location, scale, and shape 
(GAMLSS), we captured the nonlinear trajectories of the developing functional gradient, as well as the individual-level 
deviations in ASD from typical development based on centile scores measured as deviations from the normative 
curves. A whole-brain summary metric, the functional hierarchy score, was derived to measure the extent of abnormal 
maturation in individuals with ASD. Finally, through a series of mediation analyses, we examined the potential role of 
network-level connectomic disruptions between the diagnoses and deviations in the cortical hierarchy.

Results  The maturation of cortical hierarchy in individuals with ASD followed a non-linear trajectory, showing 
delayed maturation during childhood compared to that of typically developing individuals, followed by an 
accelerated “catch-up” phase during adolescence and a subsequent decline in young adulthood. The nature of 
these deviations varied across networks, with sensory and attention networks displaying the most pronounced 
abnormalities in childhood, while higher-order networks, particularly the default mode network (DMN), remaining 
impaired from childhood to adolescence. Mediation analyses revealed that the persistent reduction in DMN 
segregation throughout development was a key contributor to the atypical development of cortical hierarchy in ASD.

Limitations  The uneven distribution of samples across age groups, particularly in the later stages of development, 
limited our ability to fully capture developmental trajectories among older individuals.
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Background
Autism spectrum disorder (ASD) is a neurodevelopmen-
tal condition characterized by a wide range of behavioral 
phenotypes, including persistent deficits in social com-
munication and interaction, repetitive behaviors, and 
restricted interests [1]. Over the past several decades, 
convergent evidence of impairment in social information 
processing has indicated that ASD is a socio-cognitive 
condition [2]. Recent studies have demonstrated that 
sensory processing may be central to understanding the 
neurobiology of ASD [3]. As such, a remaining challenge 
in ASD research is to identify the common neurobiologi-
cal basis underlying its system-wide effects.

A range of approaches has been employed to compre-
hensively understand the complex behavioral phenotypes 
of ASD [4–6]. Recently, hierarchy-based measures have 
gained significant traction because of their promising 
findings and applicability [7, 8]. Central to this approach 
is the idea that the brain is systematically organized in a 
hierarchical manner, linking low-level sensory process-
ing to higher-order cognitive functions [9]. Prior studies 
have consistently supported the idea that the brain’s hier-
archical structure facilitates the transmission of sensory 
inputs across multiple cortical layers into transmodal 
regions, such as the default mode network (DMN) and 
frontoparietal network [10, 11]. Given that ASD mani-
fests as a heterogeneous combination of perceptual and 
social symptoms, this hierarchy-based approach offers a 
comprehensive framework for unraveling its complexity. 
Notably, prior conceptualizations of ASD as a condition 
of altered long-range connectivity linking sensory-driven 
posterior regions to more integrative anterior ones have 
hinted at underlying hierarchical disorganization [12]. 
Additionally, other work has revealed that abnormal sen-
sory-transmodal integration patterns correlate with clini-
cal severity in ASD [13]. Recent studies using manifold 
learning in resting-state functional MRI (rs-fMRI) have 
further demonstrated that a principal eigenvector (i.e., 
gradient) of functional connectivity spans a continuous 
brain axis, with sensory and motor networks at one end 
and the DMN at the other end [9]. This principal gradient 
closely aligns with the key characteristics of ASD, includ-
ing atypical social and communication abilities, repetitive 
behaviors and interests, and altered sensory and percep-
tual processing [7], making it a critical feature for under-
standing the underlying connectopathy of ASD. Indeed, a 
previous case-control study reported the global suppres-
sion of the connectome gradient in individuals with ASD, 

showing a narrower distribution of gradient values com-
pared to controls, leading to a disturbed cortical hierar-
chy [7].

It has been well established that the whole-brain orga-
nization of the functional connectome is not static, but 
instead undergoes significant changes across the lifes-
pan, particularly during childhood and adolescence [14, 
15]. A previous study using longitudinal data showed 
that the maturation of the principal connectome gradient 
from childhood to adolescence entails both segregation 
and integration across various networks, and is associ-
ated with the expression of genes involved in calcium 
ion-regulated exocytosis and chemical synaptic trans-
mission [16]. Despite relatively well-established devel-
opmental effects on the cortical gradient, the trajectory 
of atypical functional connectome organization in ASD 
remains understudied. Most existing studies have con-
sidered demographic factors (e.g., age and sex) as con-
founding variables during statistical analyses, neglecting 
the opportunity to directly assess developmental effects 
in the autistic brain. To fully capture the developmental 
dynamics underlying atypical functional connectome 
organization in ASD, it is crucial to move beyond static 
snapshots and adopt approaches that account for changes 
over developmental time. Trajectory-based frameworks 
offer a powerful means of exploring how deviations from 
typical developmental patterns unfold, providing criti-
cal insights into the hierarchical disruptions observed 
in ASD. Thus, our work focused on characterizing age-
dependent changes in the principal connectome gradient 
in individuals with ASD, using age as the main variable of 
interest.

Trajectory analysis, which quantifies changes in brain 
structure or function with respect to age, is essential for 
understanding developmental phenomena in both typi-
cally developing (TD) brains, and those with psychiatric 
disorders [17, 18]. Given that typical brain development 
has been well characterized, trajectory analysis explains 
pathological disturbances as deviations from the typical 
developmental path. Specifically, deviant developmental 
trajectories are characterized by two distinct features: 
the timing and shape of the trajectory [18]. For exam-
ple, one longitudinal neuroimaging study demonstrated 
the presence of early brain overgrowth (i.e., altered tim-
ing) in young children with a high familial risk of autism 
[19]. Alterations in the shape of a trajectory (e.g., halting, 
failure to mature, or ectopic development) may indicate 
more severe developmental disturbances [20]. While 

Conclusions  These findings highlight the importance of understanding the developmental trajectories of cortical 
organization in ASD, collectively suggesting that early interventions aimed at promoting the normative development 
of higher-order networks may be critical for improving outcomes in individuals with ASD.
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longitudinal data are considered the gold standard for 
mapping developmental trajectories, challenges, such as 
data collection difficulties and attrition, have led to the 
rise of a complementary approach: normative modeling. 
This method, which uses large-scale cross-sectional data-
sets across a wide age range, offers a promising tool for 
identifying individual-level abnormalities by measuring 
centile deviations from normative curves [21, 22]. These 
centile deviations represent the relative distance from 
the median of the age-specific distributions, with more 
extreme centile scores indicating a greater deviation 
from the norm. Notably, one recent study using norma-
tive modeling to whole-brain cortical thickness identi-
fied highly individualized patterns of abnormalities that 
would have been statistically overlooked using traditional 
case-control approaches [23].

In this study, we aimed to evaluate whether a distinct 
developmental trajectory reflecting an atypical cortical 
hierarchy exists in ASD compared with the TD group, 
primarily hypothesizing that the principal gradient would 
follow a maturational process. To investigate this, we first 
applied a normative modeling approach to the principal 
gradient of functional connectivity to trace the develop-
ment of cortical hierarchy in TD individuals. In particu-
lar, a generalized additive model for location, scale, and 
shape (GAMLSS) [24] was used to establish a stable and 
flexible model capable of capturing nonlinear trajec-
tories. Subsequently, we explored whether a summary 
metric, the hierarchy score, based on the trajectory of 
the whole-brain hierarchy in ASD relative to the norma-
tive model, would show a distinct pattern compared with 
the TD group. Finally, we performed mediation analyses 
to examine whether the degree of network integration/
segregation mediated the relationship between diagnosis 
and hierarchy scores to gain connectome-level insights 
into how topological characteristics influence atypical 
developmental trajectories in ASD. Because our analyses 
are based on cross-sectional data, we use terms like “mat-
urational abnormalities” and “developmental trajectories” 
to describe observed age-related associations at the pop-
ulation level, rather than definitive longitudinal changes 
in individual participants.

Methods
Study participants
Two large-scale independent datasets from the Autism 
Brain Imaging Data Exchange (ABIDE), termed the 
ABIDE I and II ​(​h​t​t​​p​:​/​​/​f​c​o​​n​_​​1​0​0​0​.​p​r​o​j​e​c​t​s​.​n​i​t​r​c​.​o​r​g​/​i​n​
d​i​/​a​b​i​d​e​) [25, 26], were analyzed. The ABIDE database 
provides a large number of samples obtained from mul-
tiple centers. Participants with large head motion in 
the rs-fMRI time series (≥ 0.5  mm mean framewise dis-
placement) and faulty cortical surface segmentation in 
T1-weighted (T1w) MRI were excluded (Supplementary 

Fig.  1). ABIDE data collection was performed accord-
ing to local Institutional Review Board guidelines. All 
ABIDE datasets were anonymized, and no protected 
health information was included, following the Health 
Insurance Portability and Accountability Act guidelines 
and the 1000 Functional Connectomes Project or Inter-
national Neuroimaging Data-sharing Initiative protocols. 
The site-specific details of demographic information are 
described in Supplementary Tables 1–3.

To construct a normative developmental trajectory, we 
used an additional cohort of 652 neurologically healthy 
children and adolescents from the Lifespan Human 
Connectome Project Development (HCP-D) dataset 
[27]. These participants (aged 5–21 years [14.44 ± 4.06, 
mean ± standard deviation], 301 males and 251 females) 
represent TD individuals with diverse ethnic, racial, and 
socioeconomic backgrounds. The HCP-D data collection 
was approved by the local Institutional Review Board. 
All participants aged 18 and above provided written 
informed consent to participate, while for children under 
18 years of age, a parent or legal guardian provided writ-
ten informed consent to participate.

Data acquisition
Both T1w structural MRI and rs-fMRI were available 
from all sites in both the discovery (ABIDE-I) and rep-
lication (ABIDE-II) datasets. The site-specific imaging 
acquisition parameters are presented in Supplementary 
Tables 4 and 5. For the HCPD study, brain imaging data 
were collected using a 3T Siemens Prisma scanner (Sie-
mens, Erlangen, Germany). T1w and T2-weighted (T2w) 
images were acquired using multi-echo magnetization 
prepared rapid acquisition gradient echo (MPRAGE) at 
0.8 mm isotropic (T1w: repetition time [TR] = 2,500 ms; 
echo time [TE] = 1.81 ms; inversion time [TI] = 1,000 ms; 
flip angle = 8°; T2w: TR = 3,200 ms; TE = 564 ms). Rs-fMRI 
data were obtained with the sequences counterbalanced 
using anterior-posterior and posterior-anterior phase-
encoding directions at 2 mm isotropic, with a multi-band 
factor of 8 (TR = 800 ms; TE = 37 ms; flip angle = 52°; 488 
volumes).

Data preprocessing
In the HCP-D dataset, T1w structural MRI data were 
bias-field-corrected and skull stripped, following which 
the cortical surfaces were reconstructed. Structural 
images were segmented into the cerebrospinal fluid, gray 
matter, and white matter, and then spatially normalized 
to the standard Montreal Neurological Institute (MNI) 
space. Blood oxygen level-dependent (BOLD) time-series 
data underwent slice-timing correction, rigid-body trans-
formation-based motion correction, intensity inhomoge-
neity correction, co-registration with structural images, 
normalization to the MNI space, and projection onto 
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the cortical surface [28]. Surface-based spatial smooth-
ing with a 2  mm full width at half maximum (FWHM) 
was subsequently performed. A bandpass filter (0.008–
0.1 Hz) was then applied, and six head motion parame-
ters were regressed out. Despiking and motion scrubbing 
were not performed.

We applied a standardized preprocessing pipeline of 
the HCP-D dataset to the ABIDE dataset. The ABIDE-I 
and II datasets were preprocessed using QuNex, which 
adapts HCP preprocessing pipelines [28] for broader 
applications [29]. In the ABIDE dataset, the T1w struc-
tural MRI data were bias-field corrected, skull stripped, 
and registered to the MNI space. The gray and white 
matter were segmented, and the cortical surfaces were 
reconstructed to produce individual anatomical segmen-
tations of both the cortical and subcortical regions [30]. 
The BOLD time-series data were slice-timing-corrected, 
head-motion-corrected, and registered to the MNI space. 
Cortical surface models for the pial and white matter 
boundaries, along with segmentation masks for subcorti-
cal voxels, were subsequently used to generate the grayor-
dinate space [28]. The preprocessed cortical BOLD data 
were then mapped to the standard gray ordinate space, 
using a cortical ribbon-constrained volume-to-surface 
mapping algorithm. Surface-based spatial smoothing 
with a 2 mm FWHM was performed. Finally, a bandpass 
filter with a range of 0.008–0.1  Hz was applied, and six 
head-motion parameters were further regressed out. 
Despiking and motion scrubbing were not performed.

Functional connectivity gradients
The present study focused primarily on the first principal 
gradient, which represents the sensory-DMN axis. We 
estimated cortex-wide functional connectivity gradients 
from preprocessed BOLD data using the Schaefer atlas 
[31] with 200 parcels. Functional connectivity matrices 
were computed by calculating the Pearson’s correlations 
between the time-series data of distinct brain regions 
for each participant. Fisher’s r-to-z transformation was 
subsequently applied to normalize the distribution of 
the correlation values. Next, the functional connectivity 
matrix was refined by retaining only the strongest 10% 
of the connections per row by following previous stud-
ies on functional connectivity gradients [7, 9, 32–34]. 
An affinity matrix capturing the similarity in connectiv-
ity patterns across the cortical areas was subsequently 
constructed using a normalized angle kernel. Low-
dimensional representations, referred to as gradients, 
were extracted from this matrix by using diffusion map 
embedding [35] for each participant. A group-level con-
nectivity matrix for the HCP-D datasets was created by 
averaging the individual functional connectivity matri-
ces, while a group-level template gradient was computed 
from the averaged functional connectivity matrix. The 

individual gradients of the HCP-D and ABIDE datasets 
were aligned to a group-level template gradient using 
Procrustes rotation [36]. The entire gradient estimation 
process was conducted using the BrainSpace toolbox 
[37]. Finally, to mitigate scanner and site effects within 
the ABIDE dataset, combat harmonization was applied 
to the gradient values [38].

Normative modeling
Normative models were constructed using the GAMLSS 
model [24, 39], which allowed us to capture nonlinear 
age-related patterns of cortical hierarchy in TD individ-
uals and identify deviations in ASD relative to this nor-
mative pattern. This approach has been widely applied 
across various fields to approximate developmental tra-
jectories from cross-sectional data [22, 40, 41]. Fitting the 
GAMLSS model involves a four-parameter distribution 
modeling µ, σ, ν, and τ; corresponding to the mean, vari-
ance, skewness, and kurtosis of the feature distribution, 
respectively. We used the four-parameter sinh-arcsinh 
(SHASH) distribution [42], following the recommenda-
tions for the normative modeling of neuroimaging data 
[43]. Specifically, region-wise normative modeling of gra-
dient values based on age and the interaction between 
age and sex was performed as follows:

	

y ∼ SHASH(µ, σ, ν, τ),
µ = βµ + βµ ,agef(age) + βµ ,age∗sexf(age ∗ sex),

log(σ) = βσ + βσ,agef(age),
log(ν) = βν ,
log(τ) = βτ ,

� (1)

where f(x) is a nonlinear function (i.e., P-spline) of x. 
GAMLSS model fitting was implemented using the gamlss 
R package [39]. A normative model for the gradient val-
ues was constructed using the HCP-D dataset and then 
transferred to the TD group of the ABIDE dataset. For the 
ABIDE dataset, the intercepts (i.e., βµ ,new, βσ ,new) were 
re-estimated while retaining the nonlinear effect of age 
fixed [43]. This procedure adjusts the intercept and standard 
deviation of the model to better correspond to the data from 
a new dataset while preserving the estimated nonlinear age-
related terms. Significant age effects were determined from 
the βµ ,age, while multiple comparisons across the brain 
regions were corrected using the false discovery rate (FDR) 
procedure [44].

To quantify the extent to which an individual deviates 
from normative trajectories, we calculated centile scores, 
which serve as age- and sex-specific indicators of devia-
tions in gradient values across developmental stages. The 
centile score was determined by comparing each individ-
ual’s brain features (i.e., gradient value) with those from 
the normative distribution. This difference determines an 
individual’s position within the normative distribution, 
with higher or lower centile scores indicating the degree 
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of atypicality relative to the reference group. Extreme 
scores indicate a greater deviation from normal. We uti-
lized ABIDE-I data for the primary normative model-
ing analyses, and the reproducibility was assessed using 
ABIDE-II data, following the same preprocessing steps, 
modeling framework, and exclusion criteria.

Computing the hierarchy score
We devised a functional hierarchy score as a summary 
metric (i.e., a scalar value for the whole brain), repre-
senting the relative closeness of individual data points 
with respect to the normative cortical functional hierar-
chy. We defined this as the cosine similarity between an 
individual’s gradient ( G1) and the normative gradient for 
their age ( NormG1age), as estimated by the GAMLSS 
model.

	
Hierarchy score = NormG1age · G1

||NormG1age|| ||G1|| � (2)

This metric assesses how closely the individual gradient 
aligns with the normative functional hierarchy, reflecting 
the proximity of the functional hierarchy based on the 
participants’ age and sex. The higher the score, the closer 
the individual’s brain matches the normative functional 
hierarchical pattern. To construct developmental trajec-
tories of hierarchy scores for the ASD and TD groups, 
we further modeled the age-related changes in hierarchy 
scores for each group using the GAMLSS from Eq. 1.

Measures of functional integration and segregation
To assess the topological characteristics of the cortical 
hierarchy in individuals with ASD, we calculated the par-
ticipation coefficient (PC), which assesses the integration 
and segregation of functional networks [45]. A higher 
PC indicates greater integration and a lower PC indi-
cates greater segregation. The PC of node i is defined as 
follows:

	
PCi = 1 −

∑
m∈M

(
ki (m)

ki

)2

,� (4)

where M  represents the set of network modules, ki(m) 
is the degree of node i with respect to all nodes in mod-
ule m, and ki is the total degree of node i with respect 
to all the other nodes in the entire network. PC was cal-
culated from a binarized functional connectivity matrix 
that retained only the top 10% of positive connections 
using the Yeo-7 functional network as the module [46]. 
To control for age, sex, and diagnosis labels, we calcu-
lated the PC centile scores based on the normative mod-
els specific to each group using the GAMLSS from Eq. 1.

Mediation analysis
We assessed whether the relationship between the diag-
nostic group and the hierarchy score was mediated by 
connectome-level observations. Specifically, a mediation 
analysis was performed to examine whether the asso-
ciation between the diagnostic group and the hierarchy 
score was mediated by the whole-brain and network-spe-
cific PC centilescores. The significance of the mediation 
effect was determined through 5,000 bootstraps using 
lavaan package in R [47]. All regression weights were 
standardized.

Between-group comparison in functional hierarchy
We evaluated abnormal development of the functional 
hierarchy (i.e., gradient values or centile scores) in indi-
viduals with ASD relative to TD individuals. First, to 
compare the gradient values between groups, we fitted 
cortex-wide linear models implemented in the BrainStat 
toolbox [48], after controlling for age and sex. We further 
compared the centile scores from the GAMLSS mod-
els between the ASD and TD groups using two-sample 
t-tests. We further computed the magnitude of between-
group differences using t-statistics to compare gradient 
values or centile scores. Multiple comparisons across 
brain regions were corrected using the FDR procedure 
[44].

Replication and behavioral analyses
We replicated our findings using the independent 
ABIDE-II dataset to verify the reproducibility. We 
repeated the entire analysis by substituting ABIDE-I with 
ABIDE-II. Additionally, we correlated social responsive-
ness scale (SRS) scores with the hierarchy scores [49] to 
assess the clinical relevance of the scores (Supplementary 
Tables 1 and 2). For the correlation analysis, we used a 
subset of the data (ABIDE-I: n = 240, ABIDE-II: n = 538) 
to capture the spectrum of autistic traits across both 
ASD and TD populations. Note that the SRS subdo-
main scores were only available for the ABIDE-II dataset. 
Lastly, to assess the impact of uneven age distribution on 
developmental trajectory shapes in the ABIDE-II replica-
tion dataset (Supplementary Fig.  2), we divided the age 
range into five equal intervals and uniformly sampled 
participants from each interval. Since this adjustment 
resulted in some intervals lacking female participants, we 
simplified the GAMLSS model by removing the interac-
tion term ( age ∗ sex). We repeated the resampling pro-
cedure 100 times and averaged the resulting trajectories. 
This approach enabled us to assess the stability of the 
trajectory shapes under a more balanced age distribution 
(Supplementary Fig. 3A).
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Replication in the longitudinal data
To further validate the cross-sectional findings and 
examine whether the observed age-related patterns per-
sist within a longitudinal framework, we conducted an 
additional analysis using the ABIDE-II longitudinal data-
set (n = 38; Supplementary Table 3). This dataset included 
repeated neuroimaging measures from participants with 
ASD and TD at baseline and follow-up, enabling the 
exploration of developmental trajectories within indi-
viduals over time. We employed a GAMLSS with subject-
specific random intercepts to incorporate longitudinal 
correlations and individual-level variability. We did not 
consider age-sex interaction due to the limited sample 
size. The model parameters µ, σ, ν, and τ included sub-
ject-specific random effects (γ) to account for inter-indi-
vidual differences:

	

y ∼ (µ, σ, ν, τ),
µ = βµ + βµ,agef(age) + γ,

log(σ) = βσ + βσ,agef(age) + γ,
log(ν) = βν + γ,
log(τ) = βτ + γ,

� (4)

where γ represents the random intercepts for each sub-
ject for the four parameters. This modeling approach 
allowed us to estimate age-related changes within a lon-
gitudinal framework, taking into account for the repeated 
observations from the same individuals.

Sensitivity analyses
Multiple sensitivity analyses have been conducted to 
demonstrate the robustness of our findings. First, we per-
formed the analysis using a multimodal parcellation (i.e., 
Glasser atlas) [50] to assess whether the findings could be 
replicated with different parcellation schemes. We cor-
related the spatial patterns of centile scores between the 
Schaefer and Glasser atlases on the conte69 surface. Sec-
ond, we conducted analyses using connectivity matrices 
with different threshold levels. We replicated the main 
findings using 5% and 20% thresholds and spatially cor-
related the centile scores of ASD of different thresholds 
with those from the 10% threshold. Third, the dataset 
included left-handed, right-handed, and ambidextrous 
participants (Supplementary Tables 1–3). Excluding par-
ticipants with ambidextrous handedness, differences in 
centile and hierarchy scores between left-handed and 
right-handed participants were examined. To evaluate 
the potential impact of handedness, we included handed-
ness as a covariate in the GAMLSS modeling of hierarchy 
scores as follows:

	
µ = βµ + βµ ,agef(age)

+βµ ,age∗sexf(age ∗ sex) + βµ ,HandednessHandedness.

Fourth, to assess the potential impact of head motion 
on the results, we incorporated mean FD as a covariate 
in the GAMLSS in modeling functional gradients and 
hierarchy scores. Specifically, we modified the model as 
follows:

	
µ = βµ + βµ ,agef(age)

+ βµ ,age∗sexf(age ∗ sex) + βµ ,meanF DmeanFD.

Results
Aberrant development of functional hierarchy in autism
We generated a functional principal gradient using the 
HCP-D dataset to assess the developmental trajectory 
of the cortical hierarchy. This represents a continuum 
along an axis with sensory regions at one end and the 
DMN at the opposite end (Fig. 1A). When we fitted the 
functional gradients using the GAMLSS model, 130 of 
the 200 regions of interest (ROIs) showed significant 
changes with age (FDR-adjusted p-value ( PF DR) < 0.05). 
The developmental curve of the ROI-level principal gra-
dient with significant age effects revealed an overall 
gradient expansion maturation, with the gradient val-
ues of the sensory regions (purple) decreasing, and the 
gradient values of the DMN regions (orange) increasing 
(Fig.  1B). Based on the normative developmental tra-
jectory, we estimated the whole-brain normative func-
tional hierarchy (i.e., principal gradients) at a specific age 
( Normage), positing that the typical functional hierarchy 
at each developmental stage (i.e., age) was modeled as the 
median of the fitted distribution from GAMLSS (Fig. 1C).

We subsequently quantified the developmental pat-
terns of the functional hierarchy of individuals with 
ASD as centile scores related to the normative trajectory. 
Unlike the classical case-control paradigm, the norma-
tive modeling approach allows for a comparison of the 
abnormal functional hierarchy in ASD in terms of its 
relative distance from the TD brain. As previous research 
has pointed out, the principal functional gradient is sup-
pressed in ASD, manifesting by a decrease in the DMN 
regions of the parietal and temporal lobes and an increase 
in attention networks (Hong et al., 2019). Herein, we 
revealed through network-wise stratification that the gra-
dient values of the sensory and attention networks (i.e., 
somatomotor, dorsal attention, and ventral attention) 
increased, while there was a pronounced decrease in the 
DMN (Fig.  1D). The t-statistics from the case-control 
comparison of centile scores and the principal gradients 
revealed similar patterns across networks. This alignment 
of the spatial distribution of significant regions and net-
work-level summary results validated the clinical sensi-
tivity of centile scoring (Supplementary Fig. 4). When we 
examined the second gradient (G2), which represents the 
sensorimotor-visual axis, we observed similar patterns of 
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centile scores, with slightly reduced effects in the DMN 
and increased effects in sensory regions (Supplementary 
Fig. 5).

Hierarchy score analysis
To succinctly compute the degree of atypical maturation 
of ASD, we estimated an individual-level summary score 
(i.e., hierarchy score), and assessed the developmental 
trajectory of each group separately using the GAMLSS. 
We initially tested for group differences in the hierarchy 
score, identifying a significant decrease in the ASD group 
(p < 0.05, t = -2.536), indicating improved immaturity of 
the cortical hierarchy. Next, we explored the develop-
mental trajectory underlying compromised functional 
hierarchy in individuals with ASD (Fig.  2A). While the 
group-level hierarchy score of TD individuals increased 
at a nearly constant rate (slope: 0.009/year ±  0.001/year 
for males and 0.0077/year ±  0.001/year for females), 
that of individuals with ASD showed a markedly distinct 
developmental trajectory. In early development, ASD 
individuals exhibited a steeper increase (slope: 0.013/year 
±  0.033/year for males and 0.013/year ±  0.032/year for 
females), catching up to the typical cortical hierarchy by 
around 14.78 years for males and 14.98 years for females. 

Following this peak, the hierarchy score for the ASD 
group began to decline in the remaining age groups.

These results underscore the temporal heterogene-
ity within the cortical hierarchy. To better understand this 
heterogeneity, an age-bin analysis was conducted, in which 
we grouped the study participants into three developmen-
tal stages based on age, following the classifications used in 
prior research [51, 52]: childhood (5–12 years; ASD = 110, 
TD = 125), early adolescence (12–15 years; ASD = 101, 
TD = 121), and adolescents and young adults (15–22 years; 
ASD = 122, TD = 123) (Fig.  2B and C). Notably, each stage 
exhibited a unique whole-brain centile score pattern. During 
childhood, higher gradient values were predominantly found 
in the somatomotor ( t = 3.43, p = 0.001), dorsal atten-
tion ( t = 4.78, p <1e-4), and ventral attention networks 
( t = 4.27, p <1e-4), whereas lower scores were primarily 
observed in the DMN ( t = −5.67, p <1e-6). Significant 
network-level alterations were also found in both low-level 
and higher-order networks, making childhood the most 
atypical stage in terms of cortical hierarchy development. 
In early adolescence, network-level significance diminished, 
except for the somatomotor network ( t = 2.62, p = 0.035
) and DMN ( t = −2.86, p = 0.035). However, as 
they entered late adolescence and young adulthood, 

Fig. 1  Atypical development of the cortical hierarchy in ASD. (A) The principal gradients derived from functional connectivity of the TD group using 
the HCP-D dataset. (B) The maturational trajectory of the whole-brain functional hierarchy. Brain regions with significant age effects are plotted 
( PF DR < 0.05), and the color of each line corresponds to the gradient values from (A). (C) Normative functional hierarchy across developmental 
stages ( Normage). Here, we present two representative regions, one from low-level sensory areas and another from higher-order DMN regions. (D) 
Centile scores relative to the normative trajectory are calculated and shown on the brain surfaces. The centile scores are stratified using canonical func-
tional networks. Abbreviations: TD, typically developing; ASD, Autism spectrum disorder; Vis, Visual; SomMot, Somatomotor; DorsAttn, Dorsal attention; 
VentAttn, Ventral attention; FDR, False discovery rate

 



Page 8 of 15Lee et al. Molecular Autism           (2025) 16:21 

deviations in the cortical functional hierarchy were pre-
dominantly driven by decreased gradient values in the 
precuneus and posterior cingulate cortex within the DMN 
( t = −3.72, p = 0.002) and increased values in the con-
trol network ( t = 2.88, p = 0.016). These findings indicate 
that during early development, both low-level and higher-
order networks contribute to the atypical cortical hierar-
chy in ASD. However, lower-level networks tend to follow a 
typical developmental trajectory throughout development, 
whereas higher-order networks continue to lag, resulting 
in persistent abnormalities. Similarly, G2 exhibited a hier-
archy pattern with a nonlinear trajectory (Supplementary 
Fig. 6). Although the overall group differences in G2-based 
hierarchy scores were not statistically significant (t = − 1.366, 
p = 0.172), G2 showed stronger differences in sensory areas, 
whereas G1 revealed more pronounced changes in DMN 
regions. These findings extend our understanding of ASD 
beyond the primary sensory–transmodal hierarchy to sen-
sorimotor–visual boundaries.

Additionally, we analyzed the heterogeneity of the 
hierarchy score across age by assessing the temporal 
dynamics of sigma ( σ , variance) in the GAMLSS model. 
Hierarchy score trajectories with the 2.5% and 97.5% 
centiles revealed that the TD group showed a narrowing 
trend with age, whereas the ASD group did not follow this 
pattern (Supplementary Fig.  7A). This observation was 

corroborated by the sigma analysis, which revealed a sig-
nificant effect of age only in the TD group (Supplemen-
tary Fig. 7B). Specifically, sigma decreased significantly in 
the TD group ( t = −2.415, p = 0.016), indicating that 
individuals increasingly conformed to norms throughout 
development. In contrast, this remained nearly constant 
in the ASD group ( t = 0.047, p = 0.96), indicating a lack 
of convergence among individuals with ASD.

Topological characteristics underlying cortical hierarchy
Herein, we investigated the topological characteristics 
underlying atypical cortical hierarchies across the devel-
opmental stages in individuals with ASD. In the TD 
group, the most pronounced change was a decrease in 
sensory-transmodal edge strength, indicating segrega-
tion between the two extremes along the cortical hierar-
chy (Fig. 3A). To evaluate the functional segregation and 
integration patterns of the connectome, we characterized 
the normative trajectory of the PC by fitting other whole-
brain and network-wise GAMLSS models (Fig.  3B). All 
models, except the limbic and control networks, showed 
significant decreases in PC with age ( PF DR < 0.05). 
Notably, the PC decline in the visual and somatomotor 
networks and DMN was pronounced, reflecting typical 
maturation of the functional hierarchy.

Fig. 2  Hierarchy score analysis. (A) Calculation of the hierarchy scores and the trajectory of median and slope values [per year]. (B) Whole-brain centile 
scores across three developmental stages. (C) Network-level stratification of whole-brain centile scores across different developmental stages. ∗, p<0.05; 
∗∗, p<0.01; ∗∗∗, p<0.001. Abbreviations: TD, typically developing; ASD, Autism spectrum disorder; Vis, Visual; SomMot, Somatomotor; DorsAttn, Dorsal 
attention; VentAttn, Ventral attention
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To provide a potential mechanistic explanation for the 
effect of connectome changes on the altered hierarchy, 
we performed a mediation analysis. Specifically, we tested 
whether whole-brain and network-wise PC centile scores 
mediated group differences in the hierarchy scores. We 
initially evaluated the mediation effects at each devel-
opmental stage (Fig.  3C). The analysis revealed two key 
findings: (1) the number of networks showing signifi-
cant mediation effects and their effect sizes decreased as 
developmental stages progressed, and (2) reduced seg-
regation within the DMN emerged as the only media-
tor of the reduced hierarchy score in adolescence and 
young adulthood. These results are consistent with the 
developmental changes in the centile scores (Fig.  2C), 

indicating that both the sensory and transmodal regions 
are key markers during early developmental stages, while 
the higher-order DMN is a notable marker during ado-
lescence and young adulthood in ASD. Additionally, we 
performed analysis on all participants, rather than divid-
ing the developmental stages, finding that all PC centile 
scores, except the visual network, significantly mediated 
the change in the hierarchy score in ASD (Supplementary 
Fig. 8).

Replication analysis
To confirm the generalizability of our study, we evalu-
ated the replicability of our findings using independent 
samples from the ABIDE II dataset. First, the maturation 

Fig. 3  Topological characteristics during development. (A) FC of the TD group across different developmental stages. To improve visibility, each network 
within the FC matrix is outlined by the representative network colors shown in the legend for B. (B) The normative trajectory of whole-brain and network-
wise PC. (C) Results of mediation analysis for each stage. The paths a, b, and c denote direct effects between two variables. Significant paths are indicated 
as solid lines. The thickness of the lines corresponds to the magnitude of the effect, with the largest and smallest effects being annotated. Significant 
mediation effects are indicated by darker boxes and asterisks (∗, p<0.05; ∗∗, p<0.01; ∗∗∗, p<0.001; ns, not significant). Abbreviations: FC, functional 
connectivity; TD, typically developing; PC, participation coefficient; Whole, whole-brain; Vis, Visual; SomMot, Somatomotor; DorsAttn, Dorsal attention; 
VentAttn, Ventral attention
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pattern of the principal functional gradient was repli-
cated with an expanding sensory-DMN axis (Supplemen-
tary Fig. 9A and B). Moreover, consistent decreases in the 
principal gradient values within the DMN and increases 
in the sensory and attention networks were observed 
(Supplementary Fig.  4C). We next examined the trajec-
tory of the hierarchy score to test whether the unique 
developmental trajectory identified in the discovery 
sample could be reproduced (Supplementary Fig.  10A). 
Overall, the TD group showed a gradual increase in the 
hierarchy scores, whereas the ASD group exhibited a 
sharp increase, catching up with their initially lower 
scores. However, the trajectory lacked an early adoles-
cent peak, followed by a decline in the discovery dataset, 
presumably due to the sparse sample density after child-
hood (Supplementary Fig.  2). After adjusting the age 
distribution in the ABIDE-II dataset, the average trajec-
tory retained its nonlinear, inverted U-shaped pattern 
(Supplementary Fig. 3B). These findings indicate that the 
observed linear patterns in the replication dataset were 
likely influenced by sampling imbalances. Finally, the cen-
tile score across developmental stages reaffirmed our key 
finding that both low-level and higher-order networks 
were impaired during childhood, with only abnormalities 
in the higher-order network remaining significant as chil-
dren matured (Supplementary Fig. 10B and 10 C).

The longitudinal analyses using the ABIDE-II longitu-
dinal dataset supported our cross-sectional findings. We 

identified an inverted U-shaped association between age 
and the hierarchy score in the ASD group, closely mirror-
ing the patterns observed in the cross-sectional sample 
(Supplementary Fig. 11). Notably, the age-related curves 
remained consistent across repeated measurements 
within individuals, suggesting that the observed develop-
mental trajectories reflect stable population-level trends 
rather than idiosyncratic sampling or cross-sectional 
artifacts. While some nuances emerged, such as slight 
variations in the peak associations, the overall profile of 
age-related changes remained similar. These longitudinal 
findings confirm that the patterns detected in the cross-
sectional data are not solely attributable to between-sub-
ject variability or cohort effects.

Relevance to symptom severity
We next evaluated the clinical relevance of the hierarchy 
score by correlating it with the severity of ASD symp-
toms. We assessed the total SRS score and five subscores: 
awareness, cognition, communication, motivation, and 
mannerisms (Fig.  4). Our findings revealed significant 
correlations across the total and all five subscores, with 
an average correlation of -0.118 ± 5.96e-5, where the high-
est correlation was observed in the communication sub-
domain. These results indicate that the hierarchy score 
effectively reflects the severity of autistic symptoms, such 
that lower hierarchy scores, indicating higher deviations 
from the normative cortical hierarchy, are associated 

Fig. 4  Correlations between the hierarchy score and symptom severity. Scatter plots between the hierarchy score and total and five subscores of the 
social responsiveness scale (SRS). Abbreviations: SRS, social responsiveness scale; r, Pearson correlation coefficient; pF DR , FDR corrected p-value
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with higher symptom severity. In ABIDE-I dataset, the 
effect was not significant (r = − 0.094, p = 0.145; Supple-
mentary Fig. 12), and it may be attributable to a smaller 
sample size.

Sensitivity analyses
First, when we used the multimodal parcellation scheme 
[50], we found consistent results with our main findings 
based on the Schaefer atlas [31]. The principal func-
tional gradient was suppressed in the DMN in ASD 
(Supplementary Fig.  13), and spatial correlations of the 
centile scores were notably high (childhood: r = 0.769, 
pspin = 0.006, early adolescence: r = 0.698, pspin < 1e-3, 
and adolescence and young adult: r = 0.655, pspin < 1e-3; 
Supplementary Fig. 14). These findings indicate that our 
results are robust and can be replicated across different 
parcellation schemes. Second, the different functional 
connectivity thresholds did not change the findings. We 
observed consistent principal gradient patterns of the 
sensory-DMN axis in both thresholds and high spatial 
correlations in centile score across developmental stages 
(5%: r = 0.870 ± 0.03; 20%: r = 0.883 ± 0.06; Supplementary 
Figs. 15 and 16). Third, our analysis did not identify any 
parcels with significant differences in centile or hierar-
chy scores between left- and right-handed participants 
(Supplementary Fig. 17). When we tested βµ ,Handedness 
in the GAMLSS modeling, no measurable effect was 
found in both ASD and TD groups (ASD: p = 0.284, TD: 
p = 833). These findings suggest that handedness did not 
influence the findings in our study. Fourth, consistent 
with the main findings, the hierarchy score remained 
significantly different between the TD and ASD groups 
(t=-2.372, p = 0.018), even after controlling for mean 
framewise displacement. Including head motion as a 
covariate in the GAMLSS model also revealed nonlin-
ear trajectories, with high spatial correlations of centile 
scores with the original model observed across the three 
developmental stages (r = 0.976 ± 0.02; Supplementary 
Fig. 18).

Discussion
An increasing body of neuroimaging research has high-
lighted the age-related abnormalities in the brain con-
nectome organization along the cortical hierarchy in 
individuals with ASD [19, 53, 54]. In the present study, 
we expanded upon these observations by examining 
population-level age-related associations of the corti-
cal hierarchy in ASD using principal functional gradi-
ents and advanced GAMLSS analyses. Although our 
primary analyses were cross-sectional, we employed a 
normative modeling approach to approximate develop-
mental trajectories at the population level. To strengthen 
our interpretation, we reinforced the findings using a 
smaller subset of the ABIDE-II dataset with longitudinal 

measures, providing preliminary confirmation that the 
observed patterns are not solely artifacts of cross-sec-
tional sampling. Distinct variations were observed in 
the ASD group by tracing the developmental trajectory 
of cortical hierarchy. Unlike the gradual maturation of 
the hierarchy seen in TD individuals, the ASD group fol-
lowed a non-linear trajectory, characterized by delayed 
development in childhood, followed by a rapid “catch-up” 
phase during adolescence. Topological analysis revealed 
that altered segregation patterns in the sensory and 
DMN regions significantly mediated group differences 
in cortical hierarchy. Finally, associations with symptom 
severity confirmed the relevance of the hierarchy scores 
in describing autism-related symptomatology.

Extensive studies have investigated the atypical devel-
opment of functional connectomes in individuals with 
ASD. For example, some studies have shown that chil-
dren with ASD exhibit increased local connectivity and 
reduced long-range connectivity [55], whereas others 
have reported diminished connectivity among older ado-
lescents and adults with ASD [56]. However, the field 
has yet to reach a consensus on the specific patterns of 
connectome reorganization in ASD, likely due to the het-
erogeneity of the condition, with factors such as age and 
sex being the major contributors [57, 58]. One approach 
to disentangling this heterogeneity is clustering, which 
identifies subtypes within ASD [8, 20, 59]. Although clus-
tering has been successful in revealing the distinct topo-
logical and behavioral characteristics of ASD, technical 
challenges remain, such as defining the optimal number 
of clusters [60] and quantifying the individual-level brain 
features [61, 62]. Another approach to explain the het-
erogeneity of autism is the normative modeling approach 
[21, 23], which is well suited for capturing variability by 
modeling not only the mean, but also higher-order sta-
tistical moments, such as the variance, skewness, and 
kurtosis, of the connectome [24, 43]. As ASD is closely 
linked to brain maturation, in which significant changes 
occur during development, identifying atypical devel-
opmental trajectories in ASD may capture the individ-
ual-level characteristics of individuals with ASD. In the 
present study, we employed the GAMLSS model, one of 
the most widely used methods in normative modeling. 
Unlike the generalized linear model, the GAMLSS mod-
els the relationship between the predictors and response 
variables using nonlinear functions. Additionally, by 
relaxing the assumption of homoscedasticity, GAMLSS 
allows for the implicit modeling of heterogeneity induced 
by demographic factors through higher-order statistical 
moments. By accounting for the nonlinear developmen-
tal trajectories and interactions between age and sex, this 
model offers a more nuanced understanding of how ASD 
manifests across different developmental stages.
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The developmental trajectory analysis in the present 
study revealed that the sensory and attention networks 
exhibited pronounced deviations early in development, 
contributing to an atypical cortical hierarchy in indi-
viduals with ASD. However, as individuals entered ado-
lescence, these low-level networks tended to normalize, 
whereas higher-order networks, particularly the DMN, 
remained impaired. This continued dysfunction in the 
higher-order networks, particularly in the precuneus and 
posterior cingulate cortex, became more pronounced 
during the later development. This pattern aligns with 
the sensory-first hypothesis, which suggests that atypi-
cal connectome organization initially emerges in sensory 
regions during early development, with cascading effects 
observed in higher-order transmodal regions in later 
stages [3]. Higher-order transmodal regions, including 
the DMN, are critical regions in self-referential thought, 
social cognition, and integration of multisensory infor-
mation [63, 64]. Previous studies have reported that 
disruptions in the connectome organization in ASD 
are strongly linked to risk gene expression across devel-
opmental stages [65, 66]. Specifically, thalamocortical 
connectivity, which links subcortical regions to the fron-
toparietal and temporal cortices, has been identified as a 
crucial marker of adult ASD, and is associated with social 
cognition and communication [65–68]. These findings 
complement our results, which indicate that different 
sensory regions are particularly affected in childhood, 
but tend to normalize in adolescence, whereas the con-
trol and DMN regions exhibit abnormalities beginning in 
adolescence.

Topological analysis offers a complementary perspec-
tive, emphasizing the roles of integration and segregation 
in shaping the cortical hierarchy. While functional seg-
regation between the unimodal and transmodal regions 
was evident in the TD group, this became diminished 
in individuals with ASD. Prior studies have also shown 
that the functional connectome topology is linked to the 
atypical cortical hierarchy in ASD [7, 66, 69, 70]. Hong 
et al. demonstrated a marked decrease in gradient values 
within rich-club nodes connected by long-range connec-
tions, coupled with increasing scores in peripheral nodes 
connected by shorter connections [7]. This pattern indi-
cates reduced segregation between the rich-club core and 
its periphery in individuals with ASD. These topological 
disruptions appear closely tied to the first principal gra-
dient, indicating that local topological abnormalities may 
reflect broader hierarchical imbalances central to ASD’s 
core challenges. We conducted a mediation analysis to 
explicitly link functional topology with a hierarchical 
structure in ASD individuals. Our findings revealed that 
diminished segregation, characterized by disturbed func-
tional topography in both low-level and higher-order net-
works, contributes to a compromised cortical hierarchy 

during childhood. As development progressed, the influ-
ence of higher-order networks persisted and intensified, 
providing a topological framework for understanding 
the interactions between developmental stages and func-
tional gradients in individuals with ASD.

Cortical hierarchy is linked to a wide range of ASD 
symptoms [7]. Specifically, abnormalities in lower-level 
networks create a cascading effect that affects higher-
order networks and influences behavior [13]. Consistent 
with previous findings, our research showed that the 
hierarchy score, which follows a nonlinear developmental 
trajectory, is significantly associated with symptom sever-
ity in ASD. The hierarchy score reflects deviations from 
typical cortical organization, with lower scores indicat-
ing greater abnormality and a stronger relationship with 
heightened symptom severity. While the score appears to 
align more closely with normative patterns during early 
adolescence, atypicalities persist during childhood and 
young adulthood. This transient alignment during early 
adolescence may contribute to the observed decrease in 
symptom severity during this stage. However, the find-
ings caution that symptoms could re-emerge or worsen 
during adolescence as cortical hierarchy once again devi-
ates from typical developmental trajectories. This phe-
nomenon, referred to as “compensation” [71], suggests 
that while neurobiological abnormalities persist, behav-
ioral phenotypes appear to improve temporarily. By illu-
minating how neurobiological changes relate to symptom 
progression, our findings highlight the potential of the 
hierarchy score to help clinicians identify critical devel-
opmental windows for intervention. Such insights could 
ultimately guide personalized strategies to improve long-
term outcomes and mitigate symptom exacerbation dur-
ing later developmental stages [18].

Limitations
Despite its strengths, this study has several limitations. 
First, the small sample size, particularly in participants 
in the older age range, limited the generalizability of our 
findings, especially regarding the developmental tra-
jectory during late adolescence and young adulthood. 
Uncertainty in the trajectory significantly increased at 
age extremes where data points are limited, making it dif-
ficult to draw robust conclusions regarding these devel-
opmental periods [72]. The linear trajectories observed in 
the replication dataset (i.e., ABIDE-II) likely arose from 
age distribution imbalances. Future studies should pri-
oritize datasets with well-balanced age distributions and 
implement rigorous sensitivity analyses to ensure the 
reliability and nuanced interpretation of developmen-
tal trajectory analyses in ASD research. Although our 
longitudinal analysis supports the interpretation of age-
related associations as developmental trajectories, it is 
important to acknowledge certain caveats. Longitudinal 
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datasets remain limited in ASD research, and factors 
such as small sample sizes, short follow-up intervals, and 
demographic heterogeneity may influence the general-
izability of these results. Furthermore, while the pres-
ence of longitudinal data mitigates some concerns about 
inferring development from cross-sectional snapshots, 
additional large-scale, well-characterized longitudinal 
cohorts with multiple time points are essential to further 
refine our understanding of neurodevelopmental changes 
in ASD. Future research should be extended by includ-
ing larger and more evenly distributed age groups with 
longitudinal settings. The use of GAMLSS for modeling 
nonlinear trajectories also faces inherent challenges, such 
as potential overfitting and complexity in interpretation, 
which could affect the robustness of the results [43]. 
Additionally, expanding this framework to other neuro-
developmental disorders, such as attention deficit/hyper-
activity disorder, and schizophrenia, could provide better 
comparative insights into disruptions in the cortical hier-
archy across different conditions. Moreover, integrating 
genetic and molecular data into these models could offer 
a more comprehensive view of how aberrant neurobio-
logical mechanisms contribute to functional abnormali-
ties observed in ASD.

Conclusions
In conclusion, our findings provide insight into the devel-
opmental trajectory of the cortical hierarchy in ASD, thus 
highlighting distinct maturation patterns and persistent 
dysfunction in higher-order networks. Early deviations in 
sensory networks followed by long-term abnormalities in 
the DMN further underscore the heterogeneous nature 
of ASD. By extending these findings to connectome 
topology, we demonstrated how network integration and 
segregation patterns contribute to the atypical develop-
ment of the cortical hierarchy. The observed relationships 
between the hierarchy scores and behavioral outcomes 
suggests that alterations in the cortical hierarchy may 
serve as key markers to identify the severity and progres-
sion of ASD. Collectively, our study contributes to the 
growing body of evidence indicating that an atypical cor-
tical hierarchy is a hallmark of ASD, with potential impli-
cations for early diagnosis and targeted interventions. 
Future research exploring the broader neurodevelopmen-
tal landscape will help refine our understanding of these 
mechanisms and their impact on long-term outcomes.
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