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Abstract 

We and others have demonstrated the resting-state (RS) peak alpha frequency (PAF) as a potential clinical marker 
for young children with autism spectrum disorder (ASD), with previous studies observing a higher PAF in school-age 
children with ASD versus typically developing (TD) children, as well as an association between the RS PAF and meas-
ures of processing speed in TD but not ASD. The brain mechanisms associated with these findings are unknown. 
A few studies have found that in children more mature optic radiation white matter is associated with a higher PAF. 
Other studies have reported white matter and neural activity associations in TD but not ASD. The present study 
hypothesized that group differences in the RS PAF are due, in part, to group differences in optic radiation white 
matter and PAF associations. The maturation of the RS PAF (measured using magnetoencephalography(MEG)), optic 
radiation white matter (measured using diffusion tensor imaging(DTI)), and associations with processing speed 
were assessed in a longitudinal cohort of TD and ASD children. Time 1 MEG and DTI measures were obtained at 6–8 
years old (59TD and 56ASD) with follow-up brain measures collected ~ 1.5 and ~ 3 years later. The parietal-occipital 
PAF increased with age in both groups by 0.13 Hz/year, with a main effect of group showing the expected higher 
PAF in ASD than TD (an average of 0.26 Hz across the 3 time points). Across age, the RS PAF predicted processing 
speed in TD but not ASD. Finally, more mature optic radiation white matter measures (FA, RD, MD, AD) were associ-
ated with a higher PAF in both groups. Present findings provide additional evidence supporting the use of the RS 
PAF as a brain marker in children with ASD 6–10 years old, and replicate findings of an association between the RS 
PAF and processing speed in TD but not ASD. The hypothesis that the RS PAF group differences (with ASD leading 
TD by about 2 years) would be explained by group differences in optic radiation white matter was not supported, 
with brain structure-function associations indicating that more mature optic radiation white matter is associated 
with a higher RS PAF in both groups.
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Introduction
In the eyes-closed resting-state (RS), alpha oscillations (7 
to 13 Hz in adults) are the dominant rhythm, most prom-
inent in parieto-occipital regions [30, 39, 71]. Notable in 
children is an age-related increase in the frequency at 
which RS alpha oscillations show maximum power, often 
referred to as the peak alpha frequency (PAF). Among 
electroencephalography (EEG) and magnetoencephalo-
graphic (MEG) measures, the RS PAF is a robust signa-
ture of brain maturation [78, 83]. Studies show an alpha 
peak at ~ 7 Hz in young children (6 to 8 years old), with 
an adult profile not observed until late childhood or early 
adolescence [20, 60, 76]. The PAF shows promise as a 
clinical marker, showing high test and retest reliability 
[51] and is considered one of the most heritable brain 
measures [84, 85].

Among neurodevelopmental conditions, EEG and 
MEG studies have examined RS alpha activity in children 
with autism spectrum disorder (ASD)1. Several studies 
have reported a higher PAF in children with ASD than 
children with typical development (TD) [23, 28, 30, 73], 
but some studies have found no PAF group differences 
[12, 33, 50]. As detailed in Shen et  al. [73], such differ-
ences are likely due to differences in the age of the study 
cohorts. In particular, given an age-related increase in the 
PAF in TD children [13, 57, 60, 76] but not in children 
with ASD [22, 28, 30, 32, 33, 50], we have proposed the 
RS PAF as an age-specific ASD brain marker [26, 28]. As 
an example, examining male children 6 to 18 years old, 
Edgar et al. [28] found that whereas in the younger chil-
dren (6 to 10 years) the PAF was higher in ASD than TD, 
because the PAF values increased as a function of age 
in TD but not ASD. In the older children (10 to 18 years) 
the TD and ASD PAF values were similar, with the TD RS 
PAF having “caught up” to the ASD PAF. The higher PAF 
value in young children with ASD suggests more rapid 
brain maturation in ASD versus TD, mirroring a similar 
pattern of findings in structural brain development using 
magnetic resonance imaging (MRI) and diffusion tensor 
imaging (DTI) [6, 8, 16].

A potential mechanistic contributor to such group 
effects is brain structure, but few studies have sought 
to identify the structural brain correlates of the RS PAF. 
The age-related increase in the RS PAF is thought to 
reflect, in part, an enhancement of processing efficiency 
due to the maturation of white-matter pathways [68]. 
In particular, it is hypothesized that the maturation of 
white-matter connections between the thalamus and the 

parietal-occipital RS alpha generators [35, 52, 80] plays 
an important role in maturation of RS alpha activity [30, 
43, 44, 54] as well as in maturation of alpha power [42, 59, 
77, 81]. DTI provides an estimate of the structural prop-
erties of white-matter fibers, such as fiber distribution, 
density, and myelination [49, 79], with DTI parameters 
quantifying tissue microstructure in measures of frac-
tional anisotropy (FA), mean diffusivity (MD), radial dif-
fusivity (RD) and axial diffusivity (AD). In TD adults, FA 
of white-matter pathways has been associated with the 
RS PAF [82]. A recent DTI and EEG study showed that 
more mature optic radiation white matter (i.e., increased 
FA) was associated with a more mature PAF (i.e., higher 
frequency) in TD children, adolescents, and adults 5 to 
21 years old [11]. The present study evaluated the poten-
tial contribution of white-matter microstructure to the 
TD and ASD differences in the RS PAF via assessing (1) 
the maturation of the optic radiation, which is the white-
matter tract connecting the thalamus and visual cortex, 
and (2) group differences in associations between optic 
radiation white matter and the RS PAF. Altered micro-
structure and neural function associations in ASD have 
been reported in studies examining auditory cortex neu-
ral activity and auditory radiation diffusion measures, 
with the latency of auditory M50 responses associated 
with auditory radiation FA in TD but not ASD children 
[10, 66, 67]. Based on findings from these three previous 
studies, a loss of an optic radiation and RS PAF associa-
tion in children with ASD was hypothesized.

Finally, given the association between the PAF and gen-
eral cognitive ability, with the PAF predicting individual 
differences in cognitive performance, such as verbal abili-
ties [7], memory performance [48, 65], speed of process-
ing [28, 46, 73], visual target detection [11, 21, 58, 72, 86], 
and general intelligence [36], the PAF is developmentally 
and clinically relevant, with two previous studies showing 
an association between the RS PAF and processing speed 
in TD but not ASD children [28, 73]. The present longi-
tudinal multimodal study provided a better assessment 
of this association, with study findings (e.g., group differ-
ences in optic radiation white matter) identifying treat-
ment targets that might modify RS alpha activity as well 
as cognitive ability.

A three-time-point longitudinal design provided the 
ability to assess the maturation of the RS PAF and optic 
radiation white-matter in children with and without 
ASD. Replicating previous findings, a higher PAF in ASD 
than TD in this young cohort was hypothesized. Associa-
tions between the PAF and processing speed in TD but 
not ASD were also hypothesized. Finally, associations 
between optic radiation DTI metrics and the PAF were 
also predicted, with DTI and PAF associations hypoth-
esized to be stronger in TD than ASD.

1  Individuals on the autism spectrum, their parents, and professionals in 
the field differ regarding the use of person-first (e.g., children with ASD) or 
identity first (e.g., autistic child) language (Kenny et al., 2016). With respect 
for divided opinions, both approaches to terminology are used here.
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Methods
Participants
This study was approved by the Institutional Review 
Board of Children’s Hospital of Philadelphia (CHOP). 
Parents gave written informed consent, and the chil-
dren verbal and written assent. Study data were obtained 
from a longitudinal multimodal neuroimaging study 
(R01 MH107506). TD children and autistic children 
6 to 9 years old were recruited at Time 1. Although the 
study was designed so that the Time 1, 2 and 3 visits 
would occur ~ 18 months apart, a pause in data collec-
tion occurred due to COVID-19, resulting in some of 
the Time 2 and 3 visits occurring outside the 18-month 
interval (details follow). TD and ASD chidlren were 
selected according to the following criteria: (a) native 
English speakers, (b) no history of traumatic brain injury 
or other neurlogical condition such as history of sei-
zures, (c) no genetic syndromes with an extremely high 
incidence of ASD (e.g., Fragile X), (d) no intellectual dis-
ability, (e) no premature birth, (f ) no uncorrectable sen-
sory impairments, (g) no contraindications for MRI such 
as metal implants, and (h) no neuroleptic/antipsychotic 
medication, guanfacine (for attention-deficit/hyperactiv-
ity disorder or ADHD), or SSRI treatment at Time 1. Par-
ticipants taking stimulant medications were required to 
withhold medication for 24–36 h prior to their visit.

At Time 1, ASD participants had a prior diagnosis, 
made according to the  Diagnostic Statistical Manual - 
Fifth Edition (DSM-5; [3]) criteria by a clinician at CHOP 
or by autism specialists in the community. A targeted 
diagnostic battery administered at Time 1 confirmed 
the original diagnosis in the ASD group and ruled out 
ASD in the TD group. ASD diagnosis was confirmed by 
the Autism Diagnostic Observation Schedule  - Second 
Edition (ADOS-2; [55]) and parent report on the Social 
Communication Questionnaire (SCQ; [69]). Dimensional 
symptom severity indices were obtained by parent report 
on the Social Responsiveness Scale  - Second Edition 
(SRS-2; [14]).

Members of the TD group were evaluated by licensed 
study psychologists who ruled out the presence of DSM-5 

diagnoses based on clinical judgment, review of the 
child’s medical history form, parent interview, parent rat-
ings on standardized behavior questionnaires (i.e., Child 
Behavior Checklist (CBCL; [1])), Behavior Rating Inven-
tory of Executive Functioning - Second Edition (BRIEF-2; 
[34]), and cognitive testing completed by the child at each 
of their visits. TD-specific inclusion criteria included 
scoring below the cut-off for autism concern on the SCQ 
and SRS-2 parent questionnaires. Additional TD-inclu-
sion criteria included no first-degree relatives with ASD 
and no history of speech/language disorder, learning dis-
ability, ADHD, or psychiatric disorders. To rule out intel-
lectual disability in both groups, an estimated nonverbal 
intelligence quotient (NVIQ) ≥ 70 on the Wechsler Intel-
ligence Scale for Children - Fifth Edition (WISC-V; [88]), 
was required. WISC-V Symbol Search subtest score 
served as a measure of processing speed.

Group demographics for the children with evaluable 
MEG data are listed in Table 1. MEG data were obtained 
from 64 TD and 68 ASD children at Time 1. Reasons 
for unevaluable RS data included excessive motion, sig-
nificant artfact due to movement, or the child unable to 
keep their eyes closed or complete the exam. The num-
ber of children with evaluable MEG and DTI data is also 
provided in Table  1 (final column). Time 2 data were 
obtained, on average, 19 months after the Time 1 visit. 
Time 3 data were obtained, on average, 21 months after 
the Time 2 visit. Reasons for attrition following Time 1 
were as follows: lab closure due to COVID-19 (Time 2: 
TD = 12, ASD = 11, Time 3: TD = 22, ASD = 18), and new 
exclusion diagnoses after Time 1 including diagnosis of 
depression (N = 2), anxiety (N = 3), attention deficit dis-
order (N = 2), intermittent explosive disorder (N = 1), or 
learning disability (N = 2) in the TD children, and seizure 
disorder in the children with ASD (N = 3).

Four ASD children with evaluable MEG data did not 
complete cognitive testing (Time 1 = 1, Time 2 = 1, Time 
3 = 2). Seven ASD children (Time 1 = 3, Time 2 = 3, 
Time 3 = 1) and 3 TD children (all Time 1) did not com-
plete the processing speed task. No Group differences 
were observed in Sex (p = 0.61), Age (p = 0.1), or NVIQ 

Table 1  Participants with evaluable MEG RS data at each visit

Group N Sex (Female) Age years (SD) NVIQ: Fluid 
Reasoning (SD)

SRS: T-score (SD) Processing speed: 
Symbol Search (SD)

N: MEG + DTI

Time 1 TD 59 12 7.4 (0.8) 110 (14) 45 (7) 10 (3) 55

ASD 56 9 7.8 (0.8) 104 (16) 72 (12) 9 (3) 45

Time 2 TD 41 7 9.0 (0.8) 109 (14) 44 (7) 10 (3) 38

ASD 49 8 9.2 (0.9) 107 (16) 68 (11) 9 (4) 37

Time 3 TD 37 6 10.8 (0.8) 110 (13) 45 (10) 10 (3) 34

ASD 39 5 10.9 (0.9) 107 (17) 69 (8) 8 (4) 28
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(p = 0.15) across Time  (ps > 0.05). The TD cohort had 
a higher Processing Speed score than the ASD cohort 
across Time (p = 0.003). In the ASD cohort, there were 
no differences in Time 1 SRS-2 scores between the chil-
dren who returned for the Time 3 visit (N = 30) and the 
children who did not return for the Time 3 visit (N = 26; 
p = 0.60).

MEG data acquisition and MRI data acquisition 
and data processing
Eyes-closed RS MEG data were obtained from TD and 
ASD children using a 275-channel MEG system (VSM 
MedTech Inc., Coquitlam, BC). Children were instructed 
to close their eyes for 5–7 min. During the course of the 
study the length of the RS exam was increased to ensure 
sufficient data for future functional connectivity analy-
ses. Electro-oculogram ((EOG), vertical EOG above 
and below the left eyes) and electrocardiogram (ECG) 
were obtained. The EOG channel was monitored during 
recording, and if the child opened their eyes during the 
exam they were reminded to close them. After applying 
a band-pass filter (0.03–150  Hz), EOG, ECG, and MEG 
signals were digitized at 600 Hz with 3rd-order gradiom-
eter environmental noise reduction. Head position was 
monitored using four head position indicator (HPI) coils 
attached to the scalp. Children were scanned in a supine 
position.

After the MEG session, structural and diffusion MRI 
(dMRI) data were obtained using a Siemens Prisma 3T 
MR system with a 32-channel head coil. All MRI data 
were acquired while participants watched a movie of 
their choice. T1-weighted magnetization-prepared rapid 
gradient-echo (MP-RAGE) structural images were col-
lected with 0.8 × 0.8 × 0.8 mm3 spatial resolution. dMRI 
data were obtained using the HCP Lifespan diffusion 
protocol [40]. The diffusion acquisition included four 
5.5-minute sequences. Diffusion sequence parameters 
were TR = 3222 ms, TE = 89.2 ms, and a 1.5 mm isotropic 
resolution. A total of 14 b = 0 volumes, 93 b = 1500  s/
mm2, and 92 b = 3000 s/mm2 volumes were aquired with 
both anterior-to-posterior (AP) and posterior-to-anterior 
(PA) phase encoding. The 4 sequences were aquired with 
phase encoding directions ordered AP, PA, AP, PA for 
eddy-current correction. Thus, in total 398 volumes were 
acquired.

DTI data processing
Distortion correction based on the phase encoding pairs 
was performed with topup [4]. To correct for artifacts 
from eddy currents, head movements, and intravolume 
movement, eddy_cuda was run on a graphics process-
ing unit (GPU) cluster [5]. Images were visually inspected 

for motion artifacts and manually corrected if automatic 
processing failed.

DTI parameter maps including fractional anisotropy 
(FA), mean difusivity (MD), radial diffusivity (RD), and 
axial diffusivity (AD) were computed using the dtifit 
function of the FMRIB Diffusion Toolbox (FMRIB Soft-
ware Library; [74, 90]. Registration of each subject’s FA 
map to the Montreal Neurological Institute (MNI) tem-
plate was performed using FMRIB FNIRT to obtain DTI 
parameters from a visual cortex region of interest (ROI), 
capturing the distal portion of the optic radiations. Optic 
radiation diffusion measures were obtained via averaging 
across voxels in the left and right optic radiation ROI. No 
group differences were observed for the DTI motion esti-
mates (p = 0.21).

MEG data processing
MEG data were processed using BESA Research 7.1, co-
registering each child’s MEG data to their T1-weighted 
MRI data using BESA MRI 3.0 (MEGIS Software GmbH, 
Grafelfing, Germany). To represent the 275-channel 
MEG data in a smaller number of measures for analy-
sis, a source model with 15 regional sources was applied 
to project each child’s raw MEG surface data into 
brain source space [15, 28, 73]. A two-step process was 
employed for removal of muscle and movement artifact, 
with the following steps done blind to diagnosis. First, the 
child’s EOG and scalp MEG data were visually examined 
to remove epochs with blinks, saccades, or other signifi-
cant EOG activity from the MEG data. Second, each 
child’s MEG data were visually inspected for muscle-
related activity, with a focus on data from sensors close 
to the temporalis muscles, and epochs containing mus-
cle activity were removed. After artifact removal, across 
Group and Time the average child had 3 + minutes of 
evaluable RS data: 264 s for ASD (SD = 90 s, range = 28 to 
377 s) and 277 s for TD (SD = 75 s, range = 73 to 379 s). A 
linear mixed effects model was conducted on the amount 
of non-artifact RS data with factors Age and Group. A 
main effect of Age and Group indicated an increase of 
usable data by 35 s per year (p < 0.001), and more evalu-
able data for TD than ASD (p = 0.01). As detailed in the 
Online Supplement, Group differences in the amount of 
non-artifact RS data were relatively small (Supplement 
Table  1), and the amount of artifact-free RS data did 
not affect the detection of the PAF (Supplement Fig. 1). 
In additon, posthoc analyses examining PAF values 
obtained by segmenting a child’s recording (N = 10 TD 
and 10 ASD) into datasets of 7 durations (30 s, 60 s, 90 s, 
120 s, 150 s, 180 s, 210 s) showed high reliability of the 
PAF value across the 7 durations (PAF ICC = 0.96).

MEG data were transformed from scalp space to 
brain source space and then from the time domain to 
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the frequency domain, applying a Fast Fourier Trans-
form to artifact-free 3.41  s epochs of continuous data 
for each of the two orthogonally oriented time series at 
each regional source. Each 3.41 s epoch overlapped 50% 
with the next epoch, and each epoch was multiplied by a 
cosine squared window, resulting in power spectra with 
a frequency resolution of 0.29  Hz. This combination of 
overlap and windowing ensured that each time point 
contributed equally to the mean power spectra. When 
the segment of data following an artifact-free epoch was 
bad, there was no overlap between epochs, and window-
ing was thus applied to the next available artifact-free 
3.41 s epoch. The mean power spectra across the epochs 
for the two orthogonally oriented time series at each 
regional source were summed to yield the power at a 
given frequency at the source.

To obtain a measure of the RS PAF, the specparameter-
ization method and toolbox of Donoghue et  al. [25], an 
open-source Python Package (https://​specp​aram-​tools.​
github.​io) in Python (version 3.7), was used to separate 
the aperiodic (1/f ) component of the RS power spectrum 
from RS periodic oscillatory activity. Ostlund et  al. [63] 
provide a detailed review of this method. Spectral param-
eterization was performed on the power spectra at all 15 
sources using the following settings: peak_width_limits = 
[1, 8], min_peakheight = 0.1, max_number_of_peaks = 6, 
frequency_range = [3, 40] Hz, overlap threshold = 2 SD. 
As described in Ostlund et  al. [63], the following steps 
were applied to obtain estimates of the RS oscillatory 
peaks and the aperiodic offset and exponent measures. 
First, an initial aperiodic fit was applied to the power 
spectrum and removed, with the residual activity fitted 
with a Gaussian function (using the above specparam 
settings). After the fitted oscillatory peaks were removed, 
the aperiodic activity was re-fit. Finally, the fitted aperi-
odic and periodic oscillatory signals were combined and 
goodness-of-fit assessed (described with R2 and Mean 
Absolute Error (MAE)). After the initial parameteraza-
tion fit, a knee (in specparam terminology) was observed 
in the aperiodic component in a majority of the subjects 
(across Age and Group). Therefore, a knee parameter was 
included in the specparam parameterization. (As a com-
parison, the Pearson’s correlation between the PAF values 
estimated with and without knee was r = 0.86, p < 0.05,) 
The present study reports model fit (R2 and MAE) and 
the specparam alpha central frequency value (mean of 
the Gaussian).

At each visit, a single PAF value per child was identi-
fied via examining activity at the 9 posterior sources, as 
RS alpha activity is most prominent in parietal-occip-
ital regions [28, 30, 39, 61]. In particular, the PAF was 
obtained examining RS power spectra at central (left, 
midline, right), parietal (left, midline, right), and ventral 

(posterior temporal left, occipito-polar midline, posterior 
temporal right) sources. A single PAF value for each child 
was obtained via: (1) identifying the central frequency 
of the oscillatory peak with the most power between 
between 7 and 13 Hz at each source, and (2) identifying 
a single frequency with the most alpha power (i.e., the 
PAF) across the 9 sources. Across the Groups, the PAF 
was identified in the 9 posterior locations as follows: 
occipito-polar midline (46%), parietal midline (39%), 
parietal right (4%), central right (4%), posterior temporal 
left (2%), central left (2%) and central midline (2%). A chi-
square test showed that TD and ASD did not differ in the 
location where the PAF was identified (p = 0.40).

Statistical analysis
Statistical analyses were performed using R (version 
4.2.2). Linear mixed effects models (LMM), executed 
with the lme4 package [9], examined the association of 
PAF with Age, Group, and Age x Group. Age was cen-
tered by subtracting 6.1 years (the youngest age of the 
cohort). Random intercept terms were included to 
account for within-subject correlations between visits. 
Inclusion of the random slope was evaluated based on the 
smallest Akaike Information Criterion (AIC) value. Simi-
lar LMMs were conducted for all four diffusion measures 
(RD, AD, MD and FA), evaluating the maturation of the 
optic radiation as well as optic radiation Group differ-
ences. Associations between the DTI measures and the 
PAF were assessed using LMMs, with the PAF as the out-
come measure. Effects of DTI, Age, Group, and Group 
x DTI interaction were considered. Finally, associations 
between the PAF and estimates of ASD symptom sever-
ity (SRS-2 score) and processing speed (WISC-V Symbol 
Search score) were examined using LMMs with cognitive 
or behavioral score as the outcome variable. Effects of 
PAF, Group, and Group x PAF were evaluated based on 
AIC values.

Results
Specparam model goodness‑of‑fit
The specparam model fit, as estimated by MAE and R2, 
is illustrated in Fig.  1 for TD children (blue) and chil-
dren with ASD (red). No specparam model was flagged 
as underfit (MAE > 0.1, left panel). All potentially over-
fit models (i.e., a MAE smaller than 0.02) were visually 
examined (N = 24), with the PAF observed to be well 
modeled in all cases (an example illustrated in the Fig. 1 
right panel). As such, no exclusions where made based 
on MAE. The Fig. 1 middle panel shows the distribution 
of R2 values, with an average R2 of 0.99 (SD = 0.01). The 
data for the child with an R2 value of 0.93 were visually 
examined and determined to be well modeled and thus 
were retained. Regarding Group differences in model 

https://specparam-tools.github.io
https://specparam-tools.github.io
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goodness-of-fit, at Time 1 TD had better model fits than 
ASD for R2 (p = 0.04) and MAE (p = 0.03). No Group 
differences were observed at Time 2 (MAE: p = 0.11, 
R2: p = 0.22) or Time 3 (MAE: p = 0.30, R2: p = 0.18). As 
shown in the Online Supplement, the goodness-of-fit 
values for all children were excellent, with the PAF value 
correctly identified in children, even those with the low-
est goodness-of-fit values.

Maturation of the PAF
The left panel of Fig. 2 shows associations between Age 
and PAF for both Groups. The LMM predicting PAF with 
Group and Age as fixed effects and including random 
intercepts and random slopes, had a slightly lower AIC 
(AIC = 554) than without random slopes (AIC = 555). 
As such, the LMM was run with random intercepts and 
slopes. The LMM results showed PAF increasing with 
Age by 0.13  Hz/year (p < 0.001). ASD had a higher PAF 
than TD by 0.26 Hz (p = 0.02), thus ASD leading TD by 
about 2 years. A separate LMM with Group, Age, and 

the Group x Age interaction showed no interaction effect 
(p = 0.99). To further assess Group differences across 
Time, linear models predicting PAF with Group effects 
were conducted separately for each Time. Group PAF 
differences were similar across visits: Time 1 ASD > TD 
by 0.32 Hz, p = 0.01, Cohen’s d = 0.50; Time 2 ASD > TD 
by 0.26 Hz, p = 0.07, Cohen’s d = 0.39; Time 3 ASD > TD 
by 0.37  Hz, p = 0.02, Cohen’s d = 0.54. The right panel 
of Fig.  2 shows PAF maturation profiles for each child, 
showing PAF scores rising across Time as expected in 
most of the children with longitudinal data.

Maturation of optic radiation white‑matter
LMMs for each of the four DTI measures were con-
ducted with main effects of Age and Group showing 
the expected decrease with Age for RD, AD, and MD 
(ps < 0.001) and increase with Age for FA (p < 0.01). No 
main effect of Group was observed for any of the DTI 
measures (FA: p = 0.29; RD: p = 0.67; MD: p = 0.51; AD: 
p = 0.07). With the Group x Age interaction added to the 

Fig. 1  A: The distribution of MAE values (far left panel) and R2 values (middle panel). The far-right panel provides an example of the specparam 
model fit for one participant

Fig. 2  The left panel shows associations between Age and PAF for TD (blue) and ASD (red). The solid lines show the LMM linear fit line for each 
Group. The right panel shows PAF maturation profiles for each child across the three visits
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model, RD (left panel of Fig. 3) decreased slightly faster 
for ASD (0.047/year) than TD (0.038/year), a finding 
that was marginally significant (p = 0.09). The interaction 
terms for the FA, AD, and MD did not indicate Group 
differences (ps > 0.15). The right panels in Fig. 3 show FA 
(top row) and RD (bottom row) maturation profiles for 
each child, showing the expected change in diffusion val-
ues across Time in most children.

White matter and PAF associations
Figure  4 shows diffusion and PAF associations for each 
diffusion measure. LMMs predicting the PAF with DTI 
and Group as independent variables showed associa-
tions between the PAF and all four diffusion measures 
(p < 0.001) (Table  2a). When adding the DTI x Group 
interaction term, a marginally significant interaction 
between RD and Group was observed (p = 0.08), with 
simple-effect analyses suggesting a stronger association 
between the PAF and RD in ASD than in TD. A LMM 

for each Group suggested a more negative association 
between the PAF and RD in ASD (β = −2.07, p < 0.001) 
than TD (β = −0.95; FA: p = 0.003). Figure  4 shows the 
predictions for all four LMMs.

The relationships between the PAF and DTI were fur-
ther assessed considering Age. As the previous analysis 
showed a significant correlation between Age and DTI, to 
remove the collinearity between Age and the DTI meas-
ures, Age was residualized by taking the standard residual 
of linear regression models of Age with each DTI meas-
ure. The standard residuals of Age (Ageresid) were then 
included in LMMs, with the PAF the dependent variable, 
and the DTI measure, Ageresid, and Group the independ-
ent variables. Table 2b reports beta and p values for each 
diffusion measure. Negative associations were observed 
between the PAF and the MD (p = 0.005), AD (p = 0.046), 
and RD (p = 0.001) measures, and a positive association 
was observed with FA (p = 0.005; FA increased by 0.10 
and PAF increased by 0.63  Hz). As shown in the final 

Fig. 3  The left panels show associations between Age and optic radiation diffusion associations for FA (top) and RD (bottom) for TD (blue) and ASD 
(red). The solid line shows the LMM linear fit line for each Group. The right panels show FA and RD maturation profiles for each child across the three 
visits
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column of Table 2b, the Group PAF difference remained 
significant after removing the variance in the PAF associ-
ated with white matter.

The PAF and cognitive and symptom associations
Figure  5 shows associations between the PAF and pro-
cessing speed (left panel), NVIQ (middle panel), and 

SRS-2 (right panel). A LMM predicting processing speed 
with the PAF, Group, Age, and a PAF x Group interaction 
showed a marginally significant interaction (p = 0.06). 
Separate LMMs were conducted for each Group, with 
factors of PAF and Age. As shown in Fig. 5 (left panel), 
the TD Group showed a main effect of PAF: with a 1 Hz 
PAF increase, processing speed score increased by 0.86 

Fig. 4  Association with the PAF for each DTI measure. The red (ASD) and blue (TD) lines show the results of LMMs predicting the PAF with factors: 
DTI measure, Group, and the DTI x Group interaction

Table 2  With the DTI X Group interaction added, a marginal interaction was observed for RD (p = 0.10) as well as FA (p = 0.11)

Separate LMMs for each Group with factors of DTI (RD and FA) and age suggested stronger DTI and PAF associations in ASD (RD: p < 0.01; FA: p < 0.01) than TD (RD: 
p = 0.08; FA: p = 0.24)

a. LMMs ignoring Age b. LMMs with age residualized

DTI Group DTI Age (residualized) Group

MD −1.51 (p < 0.001***) −0.33 (p = 0.006**) −0.96 (p = 0.005 **) 0.17 (p < 0.001 ***) −0.29 (p = 0.01*)

AD −0.64 (p < 0.001***) −0.35 (p = 0.003**) −0.36 (p = 0.046 *) 0.21 (p < 0.001 ***) −0.29 (p = 0.01*)

RD −1.48 (p < 0.001***) −0.30 (p = 0.01*) −0.91 (p = 0.001 **) 0.17 (p < 0.001 ***) −0.29 (p = 0.01 *)

FA 8.88 (p < 0.001***) −0.28 (p = 0.01*) 6.29 (p = 0.005 **) 0.19 (p < 0.001 ***) −0.28 (p = 0.01 *)
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points. The ASD Group did not show an association 
between the PAF and processing speed. As shown in 
Fig.  5 (middle panel), although the pattern of findings 
for NVIQ was similar to that observed for processing 
speed, no main effects or interaction were observed. As 
shown in Fig. 5 (right panel), no association was observed 
between the SRS-2 score and the PAF.

Discussion
The present study sought to identify optic radiation white 
matter as a mechanistic contributor to the TD and ASD 
differences in the RS PAF. As detailed below, present PAF 
findings replicate previous studies, with group ASD > TD 
PAF differences observed at all times (Time 1: 6.1 to 9.3 
years old, Time 3: 9.4 to 13.2 years old), and with ASD 
leading TD by about 2 years. Present findings thus pro-
vide additional evidence supporting the use of the RS 
PAF as a potential brain marker in children with ASD 6 
to ~ 12 years old [26]. The present study also supported 
the hypothesis of an association between the RS PAF 
and processing speed in TD but not ASD. The RS PAF 
and the brain diffusion measures showed expected age-
related changes. The brain structure-function findings 
contribute to the small but growing literature showing 
that more mature optic radiation white matter supports 
more efficient transfer of information from the thalamus 
to the cortex, with more efficient transfer of information 
associated with a higher PAF. The hypothesis that this 
brain structure-function association would be absent in 
the children with ASD was not supported, with white 
matter predicting the RS PAF in both groups. The follow-
ing text discusses the present findings with reference to 
the study hypotheses.

Present longitudinal results extend past cross-sec-
tional findings. The finding of a higher RS PAF in ASD 

than in TD aligns with cross-sectional studies [22, 28, 
32, 73] with a higher PAF in children with ASD than TD 
observed at all three time points. The finding of higher 
PAF in young children with ASD compared to TD con-
trols was reported in a subset of this study’s Time 1 par-
ticipants (80% of the current Time 1 sample reported 
in [73]. The present study showed that group PAF dif-
ferences are observed until late childhood. The Age x 
Group interaction reported in Edgar et  al. [28], with an 
age-related maturation of the RS PAF observed in TD but 
not in ASD (different sample than the present study), was 
not observed. This is likely due to the age range of the 
sample; in the present study, the Time 3 subjects were on 
average 10.8 years old, with previous studies observing 
TD and ASD maturation differences in children up to 18 
years old. Over the next few years, the participants in this 
study will be followed for an additional three visits (1.5 
years between each visit) to further assess the maturation 
of RS alpha activity in TD and ASD children.

The finding of higher PAF in young children with ASD 
than in TD suggests that more rapid brain maturation 
may be occurring in young children with ASD. Findings 
from other RS studies in ASD support this claim, show-
ing higher PAF in early childhood followed by slower 
maturation of the RS PAF [22, 28]; and see trending find-
ings in [32, 33]. A review of the literature suggests that 
this finding of more rapid aspects of brain development 
early in life is not specific to the RS PAF and extends 
into structural imaging studies. For instance, more rapid 
brain development in ASD than in TD in early childhood 
(from birth to pre-school age) has been reported in struc-
tural MRI gray-matter measures [2, 16, 62], connectivity 
fMRI measures [19, 41], and white-matter measures [6, 
8, 31, 70, 75, 89, 91]. In an older cross-sectional sample 
(5 to 21 years old), DiPiero et al. [24] observed a greater 

Fig. 5  Scatterplots showing associations between the PAF (x axis) and processing speed (left panel), NVIQ (middle panel) and SRS-2 (right panel) 
for TD (blue) and ASD (red). Pearson’s correlation coefficients (r) between cognitive and symptom scores and PAF are shown



Page 10 of 14Shen et al. Molecular Autism           (2025) 16:19 

age-related increase in  neurite density in right hemi-
sphere gray matter in ASD compared to the TD group. In 
general, a growing literature supports the hypothesis put 
forward at the turn of the 21st century of too rapid early 
brain development in ASD [17, 18].

In the present study, a higher processing speed score 
was associated with a higher PAF in TD but not in ASD 
(the PAF x Group interaction term p = 0.06), with this 
finding also observed in a non-overlapping cohort in 
Edgar et al. [28]. These findings suggest that the differen-
tial maturation of the PAF in ASD is related to the loss of 
an association between brain activity and cognitive abil-
ity. The increase in the PAF from infancy to adulthood is 
thought to reflect the development of large-scale oscil-
latory networks that facilitate efficient connectivity [68]. 
This observation is consistent with the proposed role of 
alpha as a feedback rhythm [87] important for attentional 
control [45, 47]. The age-related PAF increase likely 
reflects more efficient neural processing (due in part to 
maturing thalamocortical white matter – see below), thus 
resulting in faster neural processing speed. The associa-
tion between the PAF and processing speed has also been 
observed in adults, suggesting that this relationship is 
stable across the lifespan [36, 46]. In the present study, 
the lack of association between the PAF and processing 
speed in young children with ASD with average or above-
average NVIQ suggests TD and ASD group differences 
in basic brain encoding processes. As studies including 
children with below-average NVIQs suggest a positive 
association between NVIQ and the PAF that is specific 
to younger children with ASD [32], future work should 
explore the relationships between the PAF and cogni-
tive ability in children across a broad range of cognitive 
abilities.

With respect to the optic radiation diffusion meas-
ures, group differences in white matter or white-matter 
maturation were not observed. The ability to detect 
white-matter group differences may depend on age. For 
example, Ouyang et al. [64] reported higher FA and lower 
RD in widespread white-matter tracks in ASD than in 
TD children before 4 years, and with TD and ASD dif-
ferences in white-matter maturation resulting in similar 
white-matter measures by ~ 4 years of age. The present 
sample (6 to 12 years old) may capture an age range 
in which TD and ASD white-matter differences have 
declined (for detailed discussion of age-dependent brain 
measures see [27, 28]. Another possibility to be examined 
in future studies is that group differences in white matter 
are regionally specific. Studies comparing TD and ASD 
groups on white-matter maturation throughout the brain 
and across childhood development are of interest.

Regarding brain structure-function associations, an 
association between optic radiation white matter (all 

four DTI measures) and the RS PAF was observed, this 
finding consistent with the two previous studies [11, 
82]. Of note is the similarity between the 0.16 increase 
in FA associated with a 1 Hz increase in the PAF in the 
present study and the DTI and FA association reported 
in Cafarra et  al. [11] in children 5 to 21 years old. Our 
hypothesis of a stronger association between the optic 
radiation diffusion and the RS PAF in TD than ASD was 
based on TD and ASD findings showing that in TD chil-
dren but not children with ASD auditory radiation white 
matter predicted auditory evoked response latencies [10, 
66, 67]. Present findings, however, indicated that in both 
TD and ASD the maturation of white-matter allows for 
more efficient thalamo-cortical communication, with 
faster thalamo-cortical communication resulting in an 
age-related increase in the RS PAF. Structural brain fea-
tures other than optic radiation white matter account for 
variance in the PAF. For example, studies have shown a 
thalamic contribution [30, 38] as well as a gray-matter 
cortical thickness contribution [56] to the PAF. It is pos-
sible that group differences in these structural measures 
account for the lost association between the PAF and 
processing speed in children with ASD.

Several study limitations are of note. Although the 
sample size is large for a longitudinal multimodal brain 
imaging study, it is limited in capturing the heterogene-
ity intrinsic to autism. In a review paper discussing the 
heterogeneity of autism, Lombardo et al. [53] noted the 
need for studies that are broad (i.e., large sample size) 
and deep (i.e., multiple levels of data collected on the 
same individual). This direction echoes discussions on 
the reliable detection of brain-behavioral associations, 
where two paths forward were proposed: (1) large sam-
ple studies (i.e., consortium studies) and (2) studies that 
deeply characterize brain function/anatomy to increase 
signal-to-noise ratio (SNR) [37]. The present study took 
steps in this direction by (1) employing multiple levels 
of data (i.e., behavioral, structural, and functional brain 
measures) in a longitudinal study design across different 
age groups, and (2) focusing on the well-studied alpha 
rhythm, which is a robust measure of neural function 
with high SNR [29].

In addition to the above heterogeneity concerns, our 
research addresses two sources of heterogeneity often 
ignored in pediatric ASD studies. A first source of het-
erogeneity often ignored in ASD brain-imaging studies is 
age. As detailed in Edgar [26], given that there are often 
non-ASD and ASD differences in the rate of brain matu-
ration, pediatric ASD markers will often be age-specific. 
As such, markers sensitive to ASD differences at one 
stage of development may be insensitive at another stage. 
A second source of heterogeneity often ignored in ASD 
electrophysiology studies is brain location; in particular, a 
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failure to obtain data that allows assessment of activity at 
specific brain locations and thus allows for the possibil-
ity (and fosters the discovery) of regionally specific group 
differences as well as to optimally assess brain structure-
function associations. The present study addresses these 
two sources of heterogeneity via examining brain activ-
ity within a restricted age range, and via examining the 
sources of brain activity rather than merely scalp sen-
sor activity (which contains activity from many different 
brain areas).

Study limitations include a predominantly male sample 
and the exclusion of children with a NVIQ < 70. Studies 
including more females are needed to examine sex dif-
ferences in brain maturation. Additional studies includ-
ing individuals with below-average NVIQ are needed to 
evaluate the generalizability of present results. The NVIQ 
criteria was imposed given the difficulty some individuals 
with intellectual disability have keeping their eyes closed 
for an extended time during a RS eyes-closed exam. In 
a recent study, we showed that an eyes-open dark-room 
task provides RS alpha measures (alpha power and PAF) 
comparable to those obtained in the eyes-closed condi-
tion [29]. We have found that this task is well-tolerated 
across the lifespan, with most participants providing sev-
eral minutes of eyes-open dark-room RS data. We are 
currently using this task to obtain high signal-to-noise 
RS measures in infants and children with intellectual dis-
ability. Another limitation is that whereas the present 
study focused on optic radiation white matter, as detailed 
above, investigating associations between thalamic vol-
ume and parietal-occipital gray matter and the PAF are 
of interest, with the possibility that these (or other) brain 
measures might account for the group PAF differences. 
Given the current sample size and the statistical com-
plexity of  examining group differences in how multiple 
brain structure measures are associated with the RS PAF 
in a longitudinal design (and with missing data), such 
analyses were beyond the scope of the present study. A 
final limitation is that the specparam goodness-of-fit 
measures slightly differed between groups at Time 1. 
However, the goodness-of-fit measures were very good, 
the differences between the groups very small (e.g., Time 
1 TD R2 = 0.987 and ASD R2 = 0.990), and as shown in the 
Online Supplement the specparam goodness-of-fit meas-
ures were not associated with the ability to detect the 
PAF.

To conclude, the present longitudinal study replicated 
prior studies showing a higher PAF in ASD than TD 
children 6 to 10 years old (ASD leading TD by about 2 
years), with the PAF associated with processing speed 
in TD but not in ASD. Present findings thus provide 
additional evidence supporting the use of the RS PAF 

as a functional brain marker in children with ASD 6 to 
~ 12 years old. Both groups showed age-related white 
matter and RS PAF associations. Overall, the brain 
structure-function findings contribute to the small but 
growing literature showing that more mature optic 
radiation white matter allows for more efficient trans-
fer of information from the thalamus to the cortex, with 
more efficient transfer of information associated with a 
higher PAF.
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