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Abstract
Background Autism is a complex neurodevelopmental condition, the precise neurobiological underpinnings of 
which remain elusive. Here, we focus on group differences in resting state EEG (rsEEG). Although many previous 
reports have pointed to differences between autistic and neurotypical participants in rsEEG, results have failed to 
replicate, sample sizes have typically been small, and only a small number of variables are reported in each study.

Methods Here, we combined five datasets to create a large sample of autistic and neurotypical individuals (n = 776) 
and extracted 726 variables from each participant’s data. We computed effect sizes and split-half replication rate 
for group differences between autistic and neurotypical individuals for each EEG variable while accounting for age, 
sex and IQ. Bootstrapping analysis with different sample sizes was done to establish how effect size and replicability 
varied with sample size.

Results Despite the broad and exploratory approach, very few EEG measures varied with autism diagnosis, and when 
larger effects were found, the majority were not replicable under split-half testing. In the bootstrap analysis, smaller 
sample sizes were associated with larger effect sizes but lower replication rates.

Limitations Although we extracted a comprehensive set of EEG signal components from the data, there is 
the possibility that measures more sensitive to group differences may exist outside the set that we tested. The 
combination of data from different laboratories may have obscured group differences. However, our harmonisation 
process was sufficient to reveal several expected maturational changes in the EEG (e.g. delta power reduction with 
age), providing reassurance regarding both the integrity of the data and the validity of our data-handling and analysis 
approaches.

Conclusions Taken together, these data do not produce compelling evidence for a clear neurobiological signature 
that can be identified in autism. Instead, our results are consistent with heterogeneity in autism, and caution against 
studies that use autism diagnosis alone as a method to categorise complex and varied neurobiological profiles.
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Background
Although the neurobiology of autism is not fully 
understood, preclinical work implicates differences in 
neuronal-cortical organisation that cause mechanis-
tic alterations at different levels of the nervous system 
including synaptic transmission and neural connectivity 
[2–4]. Building on these findings, a growing literature has 
sought to identify potential neurobiological differences 
between autistic and neurotypical individuals.

EEG, specifically resting state EEG (rsEEG), is a par-
ticularly useful method in this work given that oscilla-
tory activity computed from rsEEG provides detailed 
insight into neural dynamics that are, in turn, modulated 
by many of the markers implicated by preclinical work. 
For example, high frequency EEG oscillations in the 
gamma range are shaped by GABAA receptor mediated 
inhibitory neurotransmission [5], and multiscale entropy 
(MSE) computed from rsEEG data provides insight into 
network functional connectivity [6]. These variables can 
be obtained from very short (< 2  min) paradigms with 
limited cognitive demands, enabling data acquisition 
from a wide range of participants including infants and 
nonverbal individuals [7]. rsEEG is also the most acces-
sible neuroimaging method from the perspective of the 
participant and can be administered outside of the clinic 
or laboratory [8] increasing likelihood of clinical trans-
lation, e.g. in possible autism screening or biomarker 
detection. There is currently no recognised EEG bio-
marker for ASD, yet identifying such a biomarker from 
rsEEG would revolutionise the diagnosis of autism and 
provide much sought after insight into the neurobiology 
of the condition. For this reason, the focus of the work 
presented here is on variables derived from rsEEG.

rsEEG variables that have been reported most fre-
quently in studies comparing autistic and neurotypical 
individuals include spectral power across five canonical 
frequency bands (delta, theta, alpha, beta and gamma) 
and intersite phase clustering (ISPC), reflecting network 
connectivity. A recent systematic review of these vari-
ables found that significant differences between autistic 
and neurotypical individuals were reported in all (of 21) 
studies included in the review, but due to heterogeneity 
within the results generalisations could not be drawn [9]. 
Similarly, a meta-analysis of spectral power differences 
in autism found no significant group differences in the 
majority of frequency bands, although there was a trend 
towards reduced alpha power and increased gamma 
power in autism [10].

Beyond quantification of spectral power and measure-
ment of ISPC, other rsEEG variables reported in autism 
/ neurotypical group differences studies include: MSE; 
phase-amplitude coupling (PAC); the slope of the ape-
riodic power spectrum (1/f trend slope); and peak fre-
quency of alpha oscillations. Although the volume of 

studies reporting these variables is not yet sufficient to 
support meta-analyses, early evaluation indicates that 
while some group differences have been reported, they 
are not always replicated and can be contradictory [11–
22]. Thus, the current state of the science is that while 
rsEEG differences between autistic and neurotypical 
individuals likely exist, the specific manifestation of these 
differences is unclear.

There are a number of limitations of work in this area 
which may hamper the identification of robust group dif-
ferences. Firstly, studies typically have small samples. For 
example, the mean sample size of the 41 studies included 
in the meta-analysis by [10] was 30 autistic and 35 NT 
participants. The largest sample included 142 autistic and 
138 neurotypical participants (data included in the pres-
ent analysis as the femaleASD sample [23], but 85% of the 
studies included fewer than 50 autistic individuals. Given 
the complex and heterogeneous nature of autism, it is 
likely that samples of this size yield both type 1 and type 2 
statistical errors. For example, a recent publication from 
the EU Aims LEAP consortium with 411 participants 
found that there were no differences between autistic and 
NT groups that survived validation testing [24, 25]. Sec-
ondly, EEG variables change non-linearly with age and 
may develop differently in autism. Therefore, failure to 
replicate findings may be due, in part, to the differing age 
ranges of the samples tested. Thirdly, most investigations 
restrict their analyses to a small number of variables, to a 
subset of electrode locations and, in the case of spectral 
analyses, to particular frequency bands, which again may 
contribute to inconsistencies across studies.

Here, we sought to address these limitations by com-
bining data from five previously collected datasets to 
create a large sample of 776 participants (421 autis-
tic and 355 neurotypical). Data were obtained across a 
wide age range - from infancy to young adulthood - but 
were analysed in three distinct age brackets to allow us 
to detect differences in the neural functioning of autis-
tic individuals at different ages. We took an exploratory 
and comprehensive approach by computing many of the 
variables that have previously been suggested as differ-
ing between autistic and NT people, including absolute, 
relative, and log-transformed power, hemispheric power 
asymmetry, peak alpha frequency, MSE, PAC, ISPC, and 
1/f slope. For each variable, we included the full range of 
frequency bands (delta to gamma) and full electrode cov-
erage across the scalp, computing a total of 726 variables 
from each participant. In recognition of the risk of type 
1 errors, we report effect sizes regardless of p-value, and 
carry out split-test validation to assess the reliability of 
these effects. To our knowledge, this is the largest sam-
ple in which EEG data between autistic and neurotypi-
cal samples has been reported, both in terms of sample 
size and the number of variables analysed, and the only 
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study to report reliability testing that goes beyond leave-
one-out methods. Furthermore, because of the size of the 
dataset, we were able to carry out exploratory analyses 
investigating potential interaction effects with age and 
sex.

Our aim was to provide a comprehensive account of 
the rsEEG variables that do and do not differ between 
autistic and neurotypical individuals in order to iden-
tify which variables are worthy of future interrogation, 
particularly for studies that are aimed at understand-
ing the neurobiology of autism and / or pursuing the 
search for potential EEG biomarkers of autism. However, 
as the results reported below demonstrate, even when 

addressing the limitations outlined above, we found little 
evidence for reliable differences in rsEEG data obtained 
from the autistic and neurotypical samples.

Methods
This project was pre-registered [26]. No changes were 
made to data selection, cleaning, and signal process-
ing steps, and the age group divisions and core statisti-
cal model were not changed. However, in response to 
reviewer comments, many changes to the analysis were 
made. For ease of exposition, differences are not high-
lighted throughout the methods and no further mention 
is made to our pre-registration, but the interested reader 

Fig. 1 Example group means of selected dependent variables. a. Group mean power spectra are displayed in units of relative power. The rows cor-
respond to different electrodes. The columns correspond to age groups. Electrodes and age groups are labelled. Diagnosis group is indicated in colour. 
Shaded regions indicate the 95% confidence interval. b. Group mean multiscale entropy (MSE) values are displayed. Rows and columns are organised 
similarly to panel a. c. Topographical maps of spectral power in the alpha band (7.5–14 Hz) are displayed for the three age and diagnosis groups. Each plot 
is scaled independently to display maximum contrast. However, as can be seen in panel a, there was not a great deal of variability between diagnostic 
groups in the alpha band, and differences were largely contained to increasing alpha power with age
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can see the evolution of our data analysis methodol-
ogy from the pre-registration [26], to our pre-print [27], 
to the present writing. In all cases, new analyses were 
undertaken to increase statistical rigour, address possible 
confounds, and increase clarity.

Due to the size of the dataset analysed here, analy-
sis depended on efficient use of high power computing 
(HPC) resources provided by the University of Sheffield. 
Please see the supplement for tutorial details regarding 
structuring analysis code and formatting data for com-
patibility with HPC analysis.

Data
No new data were collected for this project. We combined 
eyes-open rsEEG data from five separately collected 
datasets. Table  1 displays demographic information and 

reflects the final dataset after cleaning, and Supplemental 
Fig.  2 displays the age distribution of participants from 
different datasets. All raw data were obtained through 
the National Institute of Mental Health (NIMH) data 
archive (NDA), and can be accessed there by interested 
researchers [1]. All participants diagnosed with autism by 
the original data collection teams were assessed using the 
Autism Diagnostic Observational Schedule (ADOS), and 

Table 1 Demographic and data quality statistics for all participants
group data set IQ IQ metric age in months n female n 

total
orig 
channels

final 
channels

orig epochs final 
epochs

AD biomarkCon 98 (17; 60–150) DAS GCA 106 (20; 
73–140)

39 168 124 (0) 109 (15) 91 (0; 91–91) 78 (11; 
52–91)

ASD biomarkCon 108 (13; 84–137) DAS GCA 107 (21; 
73–139)

7 23 124 (0) 117 (8) 91 (0; 91–91) 83 (8; 
61–91)

CON biomarkCon 116 (12; 90–155) DAS GCA 104 (20; 
72–142)

35 106 124 (0) 117 (8) 91 (0; 91–91) 85 (8; 
52–91)

AD biomarkDev 71 (24; 36–131) MSEL 39 (38; 3-133) 10 68 125 (0) 89 (17) 52 (16; 
20–100)

40 (13; 
12–74)

ASD biomarkDev 106 (19; 80–137) MSEL 11 (8; 3–24) 4 10 125 (0) 90 (12) 50 (18; 
38–100)

36 (4; 
30–42)

CON biomarkDev 104 (17; 49–135) MSEL 9 (4; 3–29) 22 50 125 (0) 92 (13) 53 (14; 
36–100)

41 (12; 
10–76)

AD femaleASD 99 (20; 62–167) WTAR 146 (32; 
97–214)

41 112 125 (0) 125 (1) 65 (27; 
10–123)

65 (27; 
10–123)

ASD femaleASD 103 (21; 68–149) WTAR 155 (38; 
96–215)

25 40 125 (0) 125 (1) 67 (29; 
10–121)

67 (29; 
10–121)

CON femaleASD 113 (15; 79–149) WTAR 156 (35; 
96–216)

92 178 125 (0) 125 (1) 80 (23; 
20–127)

80 (23; 
20–127)

AD socBrain 99 (10; 87–119) DAS GCA 233 (9; 216–243) 0 7 62 (0) 62 (0) 154 (4; 
150–160)

124 (34; 
66–157)

ASD socBrain 97 (12; 87–110) DAS GCA 233 (13; 
222–248)

0 3 62 (0) 51 (9) 152 (3; 
150–155)

101 (44; 
52–136)

CON socBrain 97 (0; 97–97) DAS GCA 232 (6; 228–236) 1 2 62 (0) 62 (0) 154 (6; 
150–159)

132 (23; 
115–148)

AD bpSZ WTAR 0 0
ASD bpSZ WTAR 0 0
CON bpSZ 104 (9; 94–120) WTAR 216 (21; 

180–240)
4 9 62 (0) 59 (3) 100 (0; 

100–100)
79 (10; 
63–93)

DAS GCA = Differential Ability Scales General Conceptual Ability

MSEL = Mullen Scales of Early Learning

WTAR = Weschler Test of Adult Reading

biomarkCon = The Autism Biomarkers Consortium for Clinical Trials

biomarkDev = Biomarkers of Developmental Trajectories and Treatment in ASD

bpSZ = Bipolar & Schizophrenia Consortium for Parsing Intermediate Phenotypes

femaleASD = Multimodal Developmental Neurogenetics of Females with ASD

socBrain = The Social Brain in Schizophrenia and Autism Spectrum Disorders

Numeric values indicate mean and (standard deviation; min-max)

Table 2 Age (in months) and number of participants in the 
three age groups
group age min age max n AD n ASD n CON
Youngest 3 96 123 (26) 19 (7) 93 (36)
Middle 98 126 115 (31) 21 (9) 84 (42)
Oldest 128 248 108 (29) 35 (19) 161 (73)
Parenthetical values indicate the number of female participants in each group
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we split these participants into two groups using the ter-
minology provided by the ADOS: an Autism Spectrum 
Disorder (ASD) group, and an Autism Disorder (AD) 
group. For participants too young to be assessed with the 
ADOS, diagnosis was confirmed with the ADOS retro-
spectively at ~ 36 months of age [28]. The original data 
collection teams also recruited neurotypical participants 
who were assessed as not having autism either using the 
ADOS or through the judgement of a qualified clinician 
from the original data collection team. These participants 
formed a control (CON) group for the present analysis. 
The motivation for splitting the autism group into an 
ASD and an AD group was in recognition of the hetero-
geneity of the condition; ADOS score was the only infor-
mation available across all participants to support any 
kind of sub-typing. This severity subtyping did not have a 
large impact on the interpretation of differences between 
AD and CON groups (see Supplemental Fig. 4). This sort-
ing was based on standard cut offs as specified in the 
ADOS manual [29] More details about the participant 
inclusion/exclusion criteria implemented by the original 
data collection teams, the data preprocessing, harmoni-
sation, and cleaning can be found in the supplement.

Extraction of key EEG variables
Power spectra, 1/f trend slope, peak alpha frequency 
(PAF), phase-amplitude coupling (PAC), multiscale 
entropy (MSE), and intersite phase clustering (ISPC) 
were all calculated using standard methods. For details, 
please see supplemental methods. Briefly, power spec-
tra were extracted by averaging narrow band filtered 
power time series across both time and epoch. Narrow 
band filtering was done using gaussian convolution in 
the frequency domain. 1/f exponent and offset values 
were extracted using the FOOOF package in python [30]. 
PAF was calculated by taking the mean of the best fitting 
gaussian in a candidate range of 6 to 14 Hz [13]. PAC was 
calculated following methods presented by Tort et al. 
[31] with frequency bands suggested by Peck et al. [14]. 
MSE was extracted by varying the graining of the data 
and then calculating the entropy at various graining lev-
els [32, 33], and ISPC was calculated on Laplacian trans-
formed data using methods described by [34].

Channel groupings for comparisons
All calculations generated values for every data channel 
(except ISPC, which generated values for pairs of chan-
nels), and for 100 frequencies. However, signals at adja-
cent channels and adjacent frequencies are correlated. 
In addition, utilising all calculated values as dependent 
variables would be intractable (e.g. 32 channels X 100 fre-
quencies = 3200 raw power variables alone). Thus, vari-
ables were averaged into 13 regional groups (right frontal, 
left frontal, right centroparietal, left centroparietal, right 

occipito parietal, left occipito parietal, frontal, occipital, 
central, left lateral, right lateral, right hemisphere, and 
left hemisphere) and five asymmetry sensitive compari-
sons (difference scores between groups of electrodes: 
interhemispheric, rostrocaudal difference within the 
left and right hemispheres, and mediolateral difference 
within the left and right hemispheres). This yielded 18 
total groupings of channels. Data were further averaged 
into 6 canonical frequency bands: δ (2–4 Hz), θ (4–8 Hz), 
α (8–14 Hz), 𝛽 (14–30 Hz), 𝛾low (30–50 Hz), and 𝛾high 
(50–80  Hz). See supplemental material for the specific 
variable averaging schemes.

In total there were 726 (324 power + 36 1/f slope + 36 
peak alpha + 216 PAC + 72 MSE + 42 ISPC) dependent 
variables.

Statistical evaluation of group differences for every 
dependent measure
Data were divided into tertiles using age such that there 
were an equal number of AD and ASD participants in 
each group. This resulted in age groups consisting of 3 
to 96 months old, 98 to 126 months old, and 128 to 248 
months old participants, see Table 2 for descriptive statis-
tics for each age group. This was done because it was pos-
sible that there would be complex interactions between 
age and autism diagnosis that would require bespoke 
modelling of each EEG variable. Splitting data into age 
groups made the analysis more sensitive to effects that 
might be specific to particular age ranges. Indeed, our 
results revealed group differences in different EEG vari-
ables in different age groups. To account for non-linearity 
in age effects, all EEG measures were regressed onto age 
as a single predictor and the combination of age and age 
squared:

 
Age alone model :
EEG dependent measure ∼ Age

 

Age quadratic model :
EEG dependent measure ∼ Age + Age2

A likelihood ratio test (lrtest in R) was used to compare 
these two nested models. The null hypothesis for this test 
was that the coefficient of the Age2 term was zero. In 
other words, for EEG variables where the likelihood ratio 
test was significant, it indicated that the true value of the 
coefficient of the Age2 term was not zero, and so Age2 
was used as an additional predictor in models M1-M4 
for these EEG variables. Doing this helped to account for 
quadratic changes in some EEG variables as a function of 
age.

For our main analysis, all EEG measures were regressed 
onto the Age, Sex, IQ, and Diagnosis variables using 
the following models fit with the lm function in R:
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M1 : EEG dependent measure

∼ Age + Sex + IQ + Diagnosis

 
M2 : EEG dependent measure ∼
Age + Sex + IQ + Diagnosis + Diagnosis ∗ Sex

 
M3 : EEG dependent measure ∼
Age + Sex + IQ + Diagnosis + Diagnosis ∗ Age

 
M4 : EEG dependent measure ∼
Age ∗ Sex ∗ Diagnosis + IQ

These models were fit independently for each EEG 
measure and age group resulting in 8712 statisti-
cal tests. η 2

partialwas extracted to measure effect size 
for the following independent variables in model M1: 
Age, Sex, IQ, and Diagnosis. From models M2, 
M3, and M4, η 2

partialassociated with the following 
interaction terms was extracted: Diagnosis ∗ Sex, 
Diagnosis ∗ Age, and Age ∗ Sex ∗ Diagnosis, respec-
tively. In all cases, type III sums of squares was used to 
calculate η 2

partial. Using type III sums of squares means 
that all effect size values reflect the effect of a predictor 
assuming that all other predictors were added into the 
model before it.

Assessing effect size stability
Due to the exploratory nature of the analytical approach, 
we expected a substantial number of false positive coef-
ficients in our results. To test the stability of these coef-
ficients, we used bootstrapped split-half cross-validation 
on all models where individual coefficients were associ-
ated with η 2

partial above 0.035. This procedure followed 
multiple steps, where we: (1) split the data into two 
halves, making sure that both halves had an equal pro-
portion of participants in each diagnostic group and dis-
tributions of age and sex, (2) refit models with large effect 
sizes to data splits and recalculated the effect size values, 
(3) repeated this procedure for 150 random splits of the 
data and calculated the proportion of splits for which 
both halves exhibited η 2

partial above 0.035 for each vari-
able. We termed this proportion the replication rate. 
We identified variables with a replication rate of at least 
0.64. The 0.64 level corresponds to the standard conven-
tion of 0.80 power. That is, if statistical tests are deemed 
‘good’ when they detect an effect with probability 0.8, 
then the implication is that 0.82 = 0.64 is an accept-
able level of consistency for the replication rate when a 
test is repeated. The η 2

partial cut off of 0.035 was chosen 
because this is between the standard guidance for small 
and moderate effect sizes [35] and effects smaller than 
this would be unlikely to be of interest. In addition, this 

was a level at which the p-value was robustly below 0.05 
(Fig. 2d).

Results
Qualitative assessment of the data
Figure  1 displays group averaged power spectra and 
multi-scale entropy within each age group at electrodes 
Fz, Pz, and Oz and group average topographical maps 
of alpha power within each age group and for each diag-
nosis. Visual inspection of these plots indicates that 
indices appear as expected in terms of topographical dis-
tribution of power, shape of power spectra and relation-
ship between entropy and scale, providing reassurance 
regarding the integrity of the data and the appropriate-
ness of the analysis approach on data that were obtained 
from several sources.

Quantitative search for group differences
Inclusion of a non-linear effect of age in predicting the 
EEG provided a significant improvement in model fit 
for 24.5% of EEG variables. For these variables, an Age2 
term was added to subsequent models.

Extreme outliers were removed prior to modelling 
for each EEG variable (see supplemental methods for 
detailed description of outlier detection procedure). For 
42.5% of all variables there were zero outliers. The maxi-
mum number of outliers was 40 observations for any sin-
gle EEG variable. The mean number of outliers removed 
from each analysis from neurotypical participants was 3.9 
and the corresponding value for autistic outliers was 3.6.

Figure  2a displays histograms of η 2
partialvalues for 

each independent variable across age groups for all of 
the above models. Table  3 displays the proportion of 
EEG variables predicted with η 2

partial>0.035 split by 
EEG variable type (e.g. spectral power, ISPC, MSE, PAF 
or PAC) and for each independent variable type sepa-
rately (age, sex, diagnosis, IQ and their interactions). In 
total, just over 2% (N = 54) of all diagnosis coefficients 
(N = 2,184) had η 2

partial>0.035. The corresponding value 
for interactions between diagnosis and age, sex, or age X 
sex was 1.8%. By contrast, 28% of the age coefficients and 
20% of sex coefficients had η 2

partial>0.035. The adjusted 
generalised standard error inflation factor associated 
with diagnosis was never higher than 1.2 in any model, 
suggesting that multicollinearity did not have an impact 
on the results presented here [36] (see also supplemental 
extended multicollinearity analysis and supplementary 
Fig. 2c and d).

Group differences that were replicable
Figure 2b displays histograms of the replication rate for 
each independent variable collapsed across age groups 
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and only for effects with η 2
partial>0.035. For both age 

and sex, these histograms were skewed towards large 
replication rates. By contrast, for diagnosis, the distribu-
tion of replication rate values was concentrated towards 
low values, indicating poor replicability of effects. In gen-
eral, the replication rate was higher for larger η 2

partial 
values (Fig. 2e; supplemental Fig. 2a) across all indepen-
dent variables.

Considering diagnosis specifically, 11 of the 174 coef-
ficients with η 2

partial> 0.035 yielded a replication 
rate > 0.64. These variables are listed in Table 4 and plot-
ted in Fig.  3. Five of these variables were in the young-
est age group, four were in the middle age group, and 
two were in the oldest age group. Interestingly, across all 
age groups, 7 of 11 variables were asymmetry measures. 
In addition, 7 of 11 were variables measuring aspects of 

Fig. 2 Diagnosis predicted few EEG variables with both high replication rate and effect size. a. Histograms display 𝞰²partial values associated with pre-
diction of EEG dependent variables by various independent variables (vertical axis of panels) in different age groups (horizontal axis of panels). Colours 
indicate different categories of EEG variables. All y axes are truncated at 100. Vertical dashed lines indicate the threshold of 𝞰²partial = 0.035. b. Histograms 
display the replication rate of the ability of various independent variables (vertical axis of panels) to predict EEG dependent variables with 𝞰²partial > 0.035. 
Replication rate was obtained by bootstrapping random half splits of the data and asking what proportion of splits yielded 𝞰²partial > 0.035 in both halves. 
Colours indicate different categories of EEG variables. Data are collapsed across age groups for visualisation. Vertical dashed lines indicate the threshold 
of replication rate = 0.64. c. The scatter plot displays the relationship between 𝞰²partial and p-value for diagnosis coefficients. Lines indicate the threshold 
of p =.05 and 𝞰²partial = 0.035. Colours indicate age groups. d. The scatter plot displays the relationship between 𝞰²partial and replication rate. Black dots 
indicate values for age and sex coefficients. Red dots indicate values for diagnosis, diagnosis*age, diagnosis*sex, and diagnosis*age*sex coefficients. 
The horizontal dashed line indicates the threshold of replication rate = 0.64. Diagnosis was able to predict 13 variables with replication rate > 0.64 and 
𝞰²partial > 0.035. The trend exhibited in the plot suggests that lowering the 𝞰²partial threshold would have resulted in very low replication rates
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lower frequency signals, i.e. in the delta, theta, and alpha 
bands.

The effect of sample size on and replicability
In order to investigate whether sample size per se has a 
bearing on the likelihood of finding differences in rsEEG 
between autistic and neurotypical samples, we repeated 
our entire analysis 100 times for each of 7 different sam-
ple sizes (10%, 20%, 30%, 40%, 50%, 60%, and 70% of the 
total sample size available for each age group). On each 
repetition, data were randomly sampled without replace-
ment such that the proportion of participants in each 
diagnosis group and sex was the same as in the total data-
set for each age group. Across bootstrap samples, two key 

statistics were extracted. First, the proportion of η 2
partial 

values greater than 0.035 was calculated for every boot-
strap sample. Second, normalised mutual information 
(NMI) for the pattern of EEG variables associated with 
η 2

partial greater than 0.035 was used to assess replicabil-
ity [37, 38]. NMI was calculated for every possible pair of 
bootstrap samples using the NMI function in the rand-
net R package. This approach demonstrated that when 
sample size was low, diagnosis predicted the EEG with 
η 2

partial greater than 0.035 more often than did age or 
sex (Fig.  4a). As sample size increased, the percentage 
of EEG variables that were well-predicted by diagnosis 
decreased and approached 0% as sample size approached 
200. By contrast, age and sex approached asymptotes as 

Table 3 Performance of different predictors in each age group for different dependent variables (DV)
Age Group DV Age Sex IQ Diagnosis Diag*Age Diag*Sex Diag*Age*Sex
3–96 months PAC 0.18 0.02 0.01 0.02 0.02 0 0.02
3–96 months PAF 0.32 0 0 0.03 0 0 0
3–96 months ISPC 0.38 0.5 0 0.02 0 0.02 0
3–96 months power 0.64 0.02 0.06 0.03 0.06 0.02 0.01
3–96 months MSE 0.81 0 0 0.03 0 0 0
3–96 months slope 0.69 0 0 0.03 0.06 0.03 0.03
98–126 months PAC 0 0.04 0.01 0.01 0.02 0.01 0.01
98–126 months PAF 0 0.03 0 0 0.03 0 0.03
98–126 months ISPC 0 0.83 0.02 0.05 0.02 0 0
98–126 months power 0.14 0.43 0.02 0.05 0 0 0.02
98–126 months MSE 0.07 0.17 0 0.03 0 0.14 0.01
98–126 months slope 0 0.11 0 0 0 0 0
128–248 months PAC 0.11 0 0 0.01 0.02 0.01 0.01
128–248 months PAF 0.05 0 0 0 0 0 0.03
128–248 months ISPC 0.17 0.76 0 0 0 0 0.02
128–248 months power 0.44 0.37 0 0.01 0.03 0 0.04
128–248 months MSE 0.53 0.31 0 0 0 0 0.07
128–248 months slope 0.53 0.03 0 0.08 0 0 0.22
MEAN -- 0.28 0.2 0.01 0.02 0.01 0.01 0.03
SD 0.27 0.27 0.01 0.02 0.02 0.03 0.05
Proportion of independent variables predicted with partial 𝜂²0.035

PAC = phase amplitude coupling; PAF = peak alpha frequency; ISPC = intersite phase clustering; power = spectral power; MSE = multiscale entropy; slope = 1/f trend 
slope

Table 4 Variables that passed both effect size and replication rate thresholds
dependent Variable Age Group IV η 2

partial
replication rate

central relative theta power 1 Diag * Age 0.06 0.65
Asymmetry in delta power left hemisphere midline - lateral 1 Diag 0.06 0.71
Asymmetry in log delta power left hemisphere midline - lateral 1 Diag 0.06 0.67
Asymmetry in log delta power right hemisphere midline - lateral 1 Diag 0.07 0.71
long range delta ISPC 1 Diag * Sex 0.06 0.72
log of high gamma power in right lateral 2 Diag 0.06 0.74
asymmetry in high gamma power left hemisphere rostral - caudal 2 Diag * Age * Sex 0.07 0.66
Alpha - gamma PAC occipital 2 Diag * Sex 0.06 0.85
Asymmetry in beta - high gamma PAC left hemisphere midline - lateral 2 Diag * Age 0.04 0.84
Asymmetry in relative delta power right hemisphere midline - lateral 3 Diag 0.05 0.65
Asymmetry in alpha power right hemisphere midline - lateral 3 Diag 0.06 0.79
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sample size increased, predicting approximately 40% and 
20% of EEG variables, respectively.

NMI values indicated that not only were fewer EEG 
variables predicted by diagnosis than by age and sex, 

but the set of EEG variables predicted by diagnosis was 
also less replicable (Fig.  4b). Specifically, as sample size 
increased, NMI increased more slowly for diagnosis than 
for either age or sex.

Fig. 4 Small sample sizes produced more high effect sizes but low replicability. 100 random samples for each of 7 different sample sizes were taken from 
each age group without replacement. Results are shown here collapsed across age groups. Colours indicate the independent variable. a. The scatter plot 
displays the relationship between the proportion of EEG variables predicted with 𝞰²partial > 0.035 (y axis) and sample size (x axis). Each dot represents 
the results obtained from one random sample. Notice that the proportion of EEG variables predicted with a meaningful effect size drops much more 
quickly for diagnosis as a predictor than for age or sex. The green dot denotes the results of an analysis in which a demographically matched sample was 
constructed. b. The scatter plot displays the relationship between the replicability (measured as normalised mutual information; y axis) and sample size (x 
axis). Each dot represents the NMI in the pattern of EEG variables predicted with 𝞰²partial > 0.035 between two random samples of the data. Notice that 
as sample size rises, the replicability of results obtained for age and sex predictors rises faster than for diagnosis

 

Fig. 3 11 EEG variables were well predicted by diagnosis or its interaction with age, sex, or age and sex. Across panels, dots represent individual partici-
pants. For box plots, vertical lines extend to 1.5 times the interquartile range above and below the 75th and 25th percentile of the data. The box indicates 
the 25th to 75th percentile with the median marked by a horizontal line. For scatter plots, lines indicate linear best fits to the data. Panels a-e display 
effects from the youngest age group. Panels f-i display effects from the middle age group, and panels j-k display effects from the oldest age group
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Finally, the possible effects of multicollinearity were 
examined one more time. Since multicollinearity is sys-
tematic dependencies between independent variables, 
the best way to eliminate its effects is to remove any such 
dependencies by rigorously matching samples. Thus, for 
each AD and ASD participant, a CON participant was 
individually selected with the same sex, an age within 
5 months, and an IQ within 10 points. Any AD or ASD 
participant for whom no match was available was dis-
carded. Any CON participant not used to match with an 
AD or ASD participant was discarded. This procedure 
made multicollinearity mathematically impossible, but it 
reduced the available sample size. The green dot in Fig. 4a 
represents the sample size and observed proportion of 
EEG variables predicted with η 2

partial greater than 0.035 
in this matched sample. If it were the case that multicol-
linearity were artificially holding down η 2

partial estimates 
associated with diagnosis in the non-matched data, then 
creating a matched sample should have revealed a sudden 
rise in η 2

partial associated with diagnosis. However, no 
rise was observed, suggesting that multicollinearity did 
not play a role in any of the analyses presented here.

Discussion
The search for reliable differences in rsEEG between 
autistic and neurotypical individuals is a growing area of 
research but has not yet yielded clear outcomes. Limita-
tions of existing work include small samples and limited 
selection of variables reported. Here, we pooled data 
from five existing studies to assemble a large dataset 
of 776 individuals, 421 of whom were diagnosed with 
autism. We took an exploratory approach, applied a stan-
dardised pipeline to harmonise and clean the data and 
used established methods to extract multiple variables 
that have previously been hypothesised to differ between 
autistic and neurotypical samples.

At first glance our analyses provide support for differ-
ences in rsEEG obtained from autistic and neurotypi-
cal samples as we found 174 measures of EEG dynamics 
which could be predicted by diagnosis or its interaction 
with sex or age with an effect size of at least 0.035. As 
shown in Table 3, these models included variables involv-
ing all the different types of dependent variables, in line 
with published data. However, when we tested the valid-
ity of these differences using split-half analysis, the vast 
majority of these effects were less than 64% likely to rep-
licate in both halves of the data. To our knowledge, this is 
the first study to test the replicability of identified group 
differences in EEG variables computed from autistic 
and neurotypical participants within the same sample. 
The low replication rate obtained via split-half testing is 
aligned with the literature as a whole which shows gen-
erally low levels of replication between different studies 

(for example, see 9). We carried out analyses to confirm 
that the data generated expected outcomes in order to 
reassure ourselves of the integrity of our secondary-
data analysis approach. These analyses confirmed that 
this particular dataset replicated previous findings with 
respect to the range of values obtained for key variables 
and the topographical distribution of alpha power across 
the scalp (see Fig. 2). We also replicated established find-
ings including age-related increase in MSE [39] and age-
related decrease in theta and delta power [40–42] (see 
Supplemental Fig.  3a-c). Replicating these established 
findings with this dataset and finding large effect sizes 
that strongly replicate in models that use Age and Sex as 
predictors (Fig. 1b) provided reassurance regarding both 
the integrity of the data and the validity of our data-han-
dling and analysis approaches.

When all data were analysed collectively and not within 
age boundaries, Diagnosis predicted none of the EEG 
variables with an effect size greater than 0.035. By con-
trast, age and sex continued to predict 40% and 16% of 
EEG variables respectively (see supplemental extended 
sample size analysis). These results confirm the bootstrap 
results (see Fig.  4a) which showed that as sample size 
increased, the number of Diagnosis effect sizes greater 
than 0.035 decreased and approached 0 as sample size 
approached 200. Indeed, meta-analysis has revealed that 
small sample sizes are sometimes associated with higher 
heterogeneity in effect size [43]. The number of Age and 
Sex effect sizes greater than 0.035 were also very similar 
to those found by bootstrapping (Fig. 4a), suggesting true 
non-zero asymptotes for these variables.

Taken together, these findings have important impli-
cations for studies aimed at searching for autism bio-
markers. While identifying easily measured, univariate 
biomarker(s) for autism would undoubtedly bring about 
a paradigm shift in the way that autism is understood 
and diagnosed, our work suggests that such biomarkers 
may not exist. A common refrain in the literature is that 
autism is highly heterogeneous [25, 44] and that the diag-
nostic label of autism may represent a constellation of 
unique genetic and neurological conditions [45]. Despite 
this, studies continue to compare groups based solely on 
the presence or absence of an autism diagnosis.

Our findings of very few replicable large effect sizes, 
and the bootstrap analyses which showed that larger 
samples generate fewer group differences than smaller 
samples, speak strongly to heterogeneity in the autism 
sample and cautions against the design of future stud-
ies that investigate group differences in neural markers 
when groups are classified on the presence or absence 
of an autism diagnosis alone. Instead, a more profitable 
line of enquiry is likely to emerge by investigating neu-
ral markers of particular features of the autism pheno-
type in line with the RDOC approach [46], or within 
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more homogeneous subgroups of autistic individuals, 
e.g. based on stratification to create subgroups of par-
ticipants who share particular sets of characteristics or 
genetic markers [47]. Recent work has demonstrated 
that grouping participants by differences in CNV can 
more effectively predict fMRI connectivity than group-
ing the same participants by mental health diagnosis [48]. 
By extension, clearer neural differences in rsEEG data 
might be seen when groups are based on a known CNV 
rather than on a diagnosis, such as autism, where poten-
tial genetic variance is unknown. For example, more 
consistent electrophysiological network alterations were 
found in a group of participants with a deletion of a spe-
cific CNV (22q11.2) than in a group of participants with 
heterogeneous CNVs [49]. However, within this same 
study, some findings, such as decreased network connec-
tivity, were common across genotypes suggesting that a 
“genetics first” approach may not entirely eliminate het-
erogeneity. Alternatively, where fine-grained behavioural 
phenotypic data are available, it may be possible to cor-
relate different patterns of rsEEG dynamics with behav-
ioural subtypes, as has been shown for depression [50].

Notwithstanding the above, we found thirteen vari-
ables that may be worthy of future investigation given 
their effect size and replication rate (see Table  4). In 
line with our position regarding the value of stratifying 
samples, these findings suggest that group differences 
may be moderated by age, by sex, by ADOS score and / 
or by a combination of the above. For example, autistic 
participants in the youngest age group exhibited con-
sistently higher medial relative to lateral delta power on 
both the right and left side of the head (Fig. 3a, b,c), but 
in the oldest age group, this pattern reversed such that 
neurotypical participants exhibited higher medial relative 
to lateral delta power at right lateralized scalp locations 
(Fig.  3j). We also found an interaction between age and 
diagnosis in their prediction of central theta power in the 
youngest age group. This indicated that while infants in 
the AD group exhibited increased theta power over cen-
tral scalp locations relative to neurotypical infants, by the 
age of 75 to 100 months of age, this pattern had reversed. 
Finally, there was an interesting interaction between sex 
and long-range delta connectivity in the youngest age 
group (Fig. 3e). Specifically, AD group females exhibited 
increased long range delta connectivity relative to all 
other groups. Visual inspection of the other interaction 
effects reveals that some of them may have been driven 
by the ASD group, which had few participants, and so 
these results should be interpreted with caution (Fig. 3h, 
i). Furthermore, none of these results were predicted and 
so await replication.

Limitations
Because of its increased potential for clinical transla-
tion due to its more accessible method, we focused on 
univariate variables derived from rsEEG data. We there-
fore cannot rule out the possibility that clearer EEG dif-
ferences between autistic and neurotypical individuals 
may manifest during task engagement or in multivari-
ate analyses. Neither can we rule out the possibility that 
there are further variables that could be extracted from 
the rsEEG signal that may more successfully differentiate 
the autistic from the neurotypical sample. For example, 
it may be that analysis focused on variability rather than 
mean values could reveal group differences that were not 
discovered in the present analysis. However, our analy-
sis approach was comprehensive and included indices 
that represent fundamental features of neural dynamics, 
therefore it would be somewhat surprising for a novel 
measure to demonstrate meaningful group differences. 
In our analyses, we accounted for linear and non-linear 
effects of age on the EEG and checked for interactions 
between age and diagnosis when predicting EEG dynam-
ics. However, if sufficient sample sizes were available in 
a narrow age range, then it would be preferable to com-
pare diagnostic groups without the need for age in the 
model. Lastly, it is possible that combining collected from 
multiple labs obscured meaningful group differences. 
However, this is unlikely as the results replicated several 
age-related prior results.

Conclusions
In summary, we conclude that there is limited evidence 
for differences in rsEEG associated only with a diagno-
sis of autism. Our lack of convincing group differences 
is unlikely to be due to the sample sizes being too small 
or by taking a selective approach to the particular vari-
ables being analysed. Instead, we speculate that the lack 
of group differences is likely due to heterogeneity within 
the samples and the diagnostic label of autism not being 
refined enough to capture distinct neural profiles. Future 
work may find that rsEEG data can better predict par-
ticular (potentially transdiagnostic) symptom domains 
rather than the diagnostic category per se, that reliable 
group differences are more likely to be observed when 
comparing neural dynamics in groups defined by geno-
type or homogenous phenotype rather than by diagnostic 
label, and / or that alteration in the developmental trajec-
tory of specific variables, e.g. as obtained via longitudinal 
studies, provides clearer findings than a cross-sectional 
snapshot. Our results strongly encourage adoption of 
these types of methodological approaches and caution 
against the value of designing further studies that use 
samples defined by autism diagnosis alone to investigate 
potential neurobiological differences associated with the 
autism phenotype.
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